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Cardiomyocyte Maturation
New Phase in Development

Yuxuan Guo, William T. Pu

ABSTRACT: Maturation is the last phase of heart development that prepares the organ for strong, efficient, and persistent 
pumping throughout the mammal’s lifespan. This process is characterized by structural, gene expression, metabolic, and 
functional specializations in cardiomyocytes as the heart transits from fetal to adult states. Cardiomyocyte maturation gained 
increased attention recently due to the maturation defects in pluripotent stem cell–derived cardiomyocyte, its antagonistic 
effect on myocardial regeneration, and its potential contribution to cardiac disease. Here, we review the major hallmarks of 
ventricular cardiomyocyte maturation and summarize key regulatory mechanisms that promote and coordinate these cellular 
events. With advances in the technical platforms used for cardiomyocyte maturation research, we expect significant progress 
in the future that will deepen our understanding of this process and lead to better maturation of pluripotent stem cell–derived 
cardiomyocyte and novel therapeutic strategies for heart disease.
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Mammalian heart development is a highly dynamic 
process that can be conceptually divided into 
specification, morphogenesis, and maturation 

(Figure 1A). Specification refers to the differentiation 
of the major cardiac lineages from uncommitted meso-
dermal progenitors. Morphogenesis includes the events 
that spatially organize cardiac cells, create the structural 
components of the heart, and properly connect them 
together. Maturation encompasses the cell- and tissue-
level changes that optimize the heart for strong and effi-
cient pumping throughout the animal’s lifespan. Although 
the first 2 phases have been focal points for develop-
mental cardiology, heart maturation has been less stud-
ied until recently.

Cardiomyocytes drive heart contraction. In matura-
tion, cardiomyocytes undergo changes that permit the 
cells to sustain billions of cycles of forceful contraction 
and relaxation. The term “cardiomyocyte maturation” 
refers to the constellation of changes to cell structure, 
metabolism, function, and gene expression that convert 
fetal cardiomyocytes to adult cardiomyocytes. This term 
also refers to the overarching developmental program 
that drives and coordinates the wide spectrum of phe-
notypic changes.

The recent attention to cardiomyocyte maturation 
has been driven by surging interest in cardiac regenera-
tive medicine (Figure 1B). Although current technology 
allows for efficient differentiation of human pluripotent 
stem cells (PSCs) into cardiomyocytes, these PSC-car-
diomyocytes exhibit immature phenotypes that resemble 
fetal cardiomyocytes.1,2 Despite tremendous progress in 
promoting PSC-derived cardiomyocyte (PSC-CM) matu-
ration by tissue engineering-based methods,3,4 recently 
reviewed in Karbassi et al5 and Scuderi et al,6 complete 
maturation of PSC-CMs has yet to be achieved. This mat-
uration bottleneck severely impairs the use of PSC-CMs 
in in vitro modeling for pathological, pharmacological, or 
therapeutic purposes. Electrophysiological maturation 
defects of PSC-CMs also result in arrhythmogenic risk 
from cell replacement therapy.7 New knowledge in the 
developmental biology of maturation is essential for tis-
sue engineers to rationally design better approaches to 
promote the maturation of PSC-CMs.

Cardiomyocyte maturation research is also signifi-
cant due to its connection to cardiomyocyte regenera-
tion. Natural cardiomyocyte regeneration occurs through 
proliferation of existing cardiomyocytes.8–10 Although 
cardiomyocytes exhibit proliferative capacity in the 
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fetus, they quickly lose this potential after birth,11 con-
curring with changes characteristic of cardiomyocyte 
maturation. Factors that promote cardiomyocyte matu-
ration, such as thyroid hormone12,13 and oxygen,14 are 
antagonistic to cardiomyocyte proliferation. However, 
proliferative cardiomyocytes undergo dedifferentiation 
that includes sarcomere disassembly and upregula-
tion of genes characteristic of fetal cardiomyocytes.15–17 
Forced proliferation of adult cardiomyocytes by overex-
pression of activated Yap (Yes-associated protein)18 or 
miR199a (microRNA-199a)19 adversely impacts heart 
function and causes lethality. Therefore, understanding 
the Yin and Yang between maturation and proliferation is 
essential to design strategies to stimulate cardiomyocyte 
regeneration while minimizing its side effects.

Defective cardiomyocyte maturation could also con-
tribute to heart diseases. For example, sarcomere gene 
mutations that cause cardiomyopathy have largely been 
studied for their impact on sarcomere function and Ca2+ 
sensitivity.20 However, sarcomere assembly is a key 
driver of cardiomyocyte maturation that not only orga-
nizes intracellular structures,21 but also modulates signal 
transduction.22 Thus, sarcomere mutations could cause 
cardiomyopathy by impairing the programs that coordi-
nate cardiomyocyte maturation. As another example, a 
subset of congenital heart disease patients develops 
late heart failure. Although this has been attributed to 
complications of cardiac surgery or the longstanding 
impact of aberrant hemodynamic loads, some congenital 
heart disease mutations could affect genes that regu-
late cardiomyocyte maturation22–25 and thereby predis-
pose to late myocardial dysfunction.

In this review, we first describe the phenotypic hall-
marks of cardiomyocyte maturation and next summa-
rize regulatory mechanisms that trigger and coordinate 

cardiomyocyte maturation. Ventricular, atrial, and nodal 
cardiomyocytes undergo distinct changes during matu-
ration. Most research to date has focused on ventricular 
cardiomyocytes, and accordingly, we restrict the scope 
of this review to ventricular cardiomyocytes.

MAJOR HALLMARKS OF CARDIOMYOCYTE 
MATURATION
Major biological processes in cardiomyocyte maturation 
are described below. Experientially measurable parame-
ters are summarized in Table 1. Selected recent efforts to 
mature PSC-derived cardiomyocytes using a combina-
tion of 3-dimensional culture and physical and biological 
stimuli are summarized in Table 2.

Myofibril Maturation
Myofibrils are specialized cytoskeletal structures that serve 
as the contractile apparatuses of cardiomyocytes.35,36 Sar-
comeres are longitudinally repeated subunits of myofibrils. 
A mature sarcomere comprises thin filaments (sarcomeric 
actin, troponins, tropomyosin), thick filaments (myosin 
heavy and light chains and their associated proteins, such 
as myosin binding protein C), TTN (titin) filaments, Z-lines 
(actinin and its interacting proteins), and M-lines (myo-
mesin, and its interacting proteins; Figure 2A). In a pro-
cess powered by ATP hydrolysis, myosin complexes exert 
power strokes on thin filaments that slide thick filaments 
toward the barbed end of sarcomeric actin filaments, 
which are anchored at Z-lines. This action shortens the 
distance between Z-lines and results in muscle contrac-
tion. Z-lines and M-lines cross-link thin and thick filaments 
respectively and ensure their alignment. TTN is a gigantic 
protein with N- and C-termini anchored to Z- and M- lines, 
respectively. Z-lines are also attached with other cytoskel-
etal components, such as desmin (a type of intermediate 
filament), microtubules, and the nonsarcomeric actomyo-
sin system, which mechanically integrates these cytoskel-
etal structures.

Sarcomere assembly initiates at cardiac specification 
and continuously occurs in both immature and mature 
cardiomyocytes. Thus, the emergence of sarcomeres 
should be treated as a marker of cardiomyocyte identity 
but not maturation. However, cardiomyocyte maturation 
is characterized by massive expansion of myofibrils (Fig-
ure 2B), as new sarcomeres are continuously added in 
alignment with preexisting myofibrils both longitudinally 
and laterally. Very little is known about the molecular 
mechanisms that drive sarcomere expansion.

Sarcomere maturation also features changes in ultra-
structural organization. When observed by transmission 
electron microscopy, mature sarcomeres exhibit more 
clear banding as compared to immature sarcomeres, 
suggesting improved alignment of sarcomere filaments. 

Nonstandard Abbreviations and Acronyms

AAV adeno-associated virus
ECM extracellular matrix
hiPSC-CM  human induced PSC-derived 

cardiomyocyte
ICD intercalated disc
IGF insulin-like growth factor
miRNA microRNA
MRTF myocardin-related transcription factor
NR nuclear receptor
PPAR  peroxisome proliferator-activated 

receptor
PSC pluripotent stem cell
SR sarcoplasmic reticulum
T3 triiodothyronine
T-tubule transverse-tubule
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Z-lines increase in width and alignment, and the distance 
between Z-lines (often called sarcomere length) also 
increases to ≈2.2 µm in diastole in mature, loaded car-
diomyocytes. Although the M-line protein myomesin is 
present in fetal sarcomeres, the M-line is difficult to visu-
alize by transmission electron microscopy in fetal heart. 
With maturation, the M-line becomes distinct, likely due 
to increased thick filament alignment.37

An integral element of myofibril maturation is sar-
comeric isoform switching, in which several sarcomere 
components switch from a fetal to an adult isoform 
due to transcriptional changes or alternative splicing. In 
rodents, among the most well-known is the myosin heavy 

chain (Myh) switch from fetal Myh7 to adult Myh6. By 
contrast, MYH7 is the predominant isoform in adult heart 
of humans, and this isoform preference is already estab-
lished by 5 weeks of gestation.38,39 Whether an MYH6 
to MYH7 switch occurs at an earlier stage of human 
cardiogenesis remains undetermined, but this event is 
suggested by predominant expression of MYH6 in newly 
differentiated human-induced PSC-cardiomyocytes.40

Isoform switching also affects other sarcomere com-
ponents. For example, the regulatory light chain of myosin 
was predominantly expressed by the gene MYL7 (often 
known as MLC2a) in all early fetal cardiomyocytes. How-
ever, this isoform switches to MYL2 (also known as MLC2v) 

Figure 1. Heart maturation and its implication in translational medicine.
A, Conceptual scheme of the maturation phase of heart development. Mouse stages are labeled at bottom. B, Major applications of 
cardiomyocyte (CM) maturation studies. Left, To promote the maturation of pluripotent stem cell–derived CM (PSC-CMs). Mid, To optimize CM 
regeneration conditions. Right, To better understand cardiac pathogenesis. E indicates embryonic day.
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as ventricular cardiomyocytes mature, and MYL7 expres-
sion becomes restricted to atrial cardiomyocytes.41,42 Fetal 
cardiomyocytes primarily express slow skeletal troponin I 
(TNNI1), and this is replaced by cardiac troponin I (TNNI3) 
in mature cardiomyocytes.43The more compliant splicing 
isoform of TTN (N2BA isoform, which includes both N2B 
and N2A elements of titin) is preferentially expressed in 
fetal hearts, and after birth, the stiffer N2B isoform, which 
exclude the N2A element, predominates.44 Likewise, the 
fetal isoform of myomesin (EH-myomesin) is expressed in 
fetal cardiomyocytes, and this transits to myomesin isoforms 
lacking the EH domain in mature cardiomyocytes. This iso-
form transition has been associated with the appearance 
of the M-line.37 Cardiac troponin T and tropomyosin also 
undergo maturationally regulated alternative splicing.45

Maturation of Electrophysiology and Ca2+ 
Handling
The strength, speed, and rhythm of cardiomyocyte con-
traction and relaxation are tightly controlled by electrical 
impulses and oscillations of cytoplasmic Ca2+ concentra-
tion. The electrical signals take the form of the action 

potential, which is determined by cardiac ion channels. In 
mature cardiomyocytes, the resting membrane potential 
is maintained at ≈−85 mV by the inward rectifying current 
IK1.

46 Inwardly rectifying potassium channels (Kir) Kir2.1 
and Kir2.2, encoded by genes KCNJ2 and KCNJ12, 
respectively, are the major channels that establish and 
maintain the resting membrane potential. The action 
potential is initiated by rapid opening of voltage-gated 
sodium channels (mainly Nav1.5; encoded by SCN5A), 
which permits Na+ influx (INa) and membrane depolariza-
tion. Depolarization is followed by the activity of transient 
outward potassium current (Ito) that results in a unique 
notch shape in the action potential of maturation cardio-
myocytes. Membrane depolarization opens the L-type 
Ca2+ channels (Cav1.2), which generate the Ca2+ cur-
rent (ICa,L) responsible for the plateau phase of the action 
potential in human cardiomyocytes. Action potential of 
murine cardiomyocytes does not exhibit a clear plateau 
phase. The depolarizing effect of ICa,L is counteracted by 
an array of temporally controlled repolarizing potassium 
currents, including IKs, IKr, and IK1. Upon Cav1.2 inactiva-
tion, the repolarizing potassium currents reestablish the 
resting membrane potential.

Table 1. Major Parameters of CM maturation

Gene Expression Morphology Functional Readouts

Myofibril

Overall increase of mature sarcomere 
components

Isoform switching:
 MYH6 to MYH7 (hs)
 MYH7 to MYH6 (mm)
 TNNI1 to TNNI3
 TTN-N2BA to TTN-N2B
 MYL7 to MYL2

Sarcomere assembly and expansion

Improved sarcomere alignment

Increased sarcomere length (≈2.2 µm)

M-line formation

Sarcomere contraction:
 Fractional shortening
 Shortening velocity
 Contractile Force

Electrophysiology 
and Ca2+ Handling

Increase of ventricular ion channels, for 
example, KCNJ2

Decrease of automaticity ion channels, 
for example, HCN4

Increase of Ca2+ handling molecules, 
such as Cav1.2, RYR2, and SERCA2

T-tubule formation and organization

SR expansion and organization

Dyad formation and distribution

Action potential:
 Resting Vm (≈−85 mV)
 Max dVm/dt (≈200 V/s)
 Duration and shape

Ca2+ transient:
 Peak amplitude
 Time to peak
 Decay time
 Diastolic Ca2+

Metabolism

Glycolysis decrease, eg, HK1, PKM

Activation of mitochondrial biogenesis, 
fatty acid oxidation, and oxidative 
phosphorylation, eg, PPARGC1A, 
PPARA, ESRRA

Mitochondria number and size incr. (up 
to 40% cell volume)

Cristae formation and organization

Intermyofibrillar localization

Metabolism:
Oxygen consumption rate
Electron transport chain activity
IMM electrochemical gradient
Extracellular acidification rate

Other

Cell cycle gene silencing, eg, CDK1, 
CCNB1, AURKB

Changes of cell adhesion genes, such 
as ICD and costamere components, 
eg, GJA1

Polyploidization

Binucleation in >80% rodent CMs but 
only ≈25% human CMs

Maturational hypertrophy (≈30-fold)

ICD formation

Other readouts:
Force-frequency relationship
Post-pause potentiation
Conduction velocity
Response to beta-agonists

CM indicates cardiomyocyte; FAO, fatty acid oxidation; HCN4, hyperpolarization-activated cyclic nucleotide-gated potassium channel 4; hs, Homo sapiens; ICD, 
intercalated disk; IMM, inner mitochondrial membrane; incr., increase; KCNJ2, potassium inwardly rectifying channel subfamily J member 2; LTCC, L-type calcium channel; 
mm, Mus musculus; Myh, myosin heavy chain; N2B, contains only the N2B element; N2BA, contains both N2A and N2B elements; RYR2, ryanodine receptor 2; SERCA, 
sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; TNN, troponin; T-tubules, transverse tubules; TTN, titin; and Vm, membrane potential.
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Table 2. Efforts to Promote hiPSC-CM Maturation by 3D Tissue Engineering

Reference Huang et al26

Ronaldson-
Bouchard  

et al4,27 Shadrin et al28 Mills et al29 Ruan et al30

Hirt et al, 
Mannhardt et 
al, Lemoine et 

al31–33 Nunes et al34

Engineered tissue size and 
treatments

0.5 mm×0.2 mm, 
T3+Dex+IGF1 

for 1 wk

6 mm×2 mm, 
early ramped  

field stim. 2–6 Hz

7 mm×7 mm, 
RPMI+B27+ 

insulin for 1wk, 5% 
FBS for 2 wk

1 mm×0.5 mm, 
low glucose, 

high palmitate, 
no insulin

20 mm×0.3 mm, 
static stress for 
2 wk+electrical 
stim. for 1 wk

8 mm×0.2-1.3 
mm, ±pacing

≈600 µm wide gel 
on inelastic silk 

core; ramped field 
stim. 1–6 Hz

Myofibril assembly isoform 
switching

↑MYH6, 
↑MLC2v;  

↓MYH7, ↓MLC2a, 
↓ TNNI1

↑MYH7, ↑TNNI3 ↑MLC2V, ↑TNNI3, 
↑MYH7; ↓MLC2a

↑MLC2v; ↑TTN-
N2B, ↑MYH7/6, 

↑TNNI3/1

not described MLC2v 
detectable

↓MYH6

Sarcomere 
organization

Orderly register 
of A-bands, 

I-bands, H-zone, 
and Z-lines; no 

M-lines.

Orderly register of 
A-bands, I-bands, 

Z-lines, and 
M-lines.

Orderly register of 
A-bands, I-bands, 

H-zone, and 
Z-lines; no M-lines.

Clear Z-lines, 
I-bands, and 
A-bands; no 

M-line

Improved; lack 
detailed analysis 

of TEM

Regular Z-lines; 
inconsistent I- 

and A-bands; no 
M-line

Regular 
Z-lines; I-band 

and H-zone 
detectable; no 

M-line

Sarcomere 
length

2 µm 2.2 µm 2.1 µm 2.3 µm Not described 1.6 µm Not described

Electrophysiology 
and Ca2+ handling

Expression of 
channels & 
regulators

↑KCNJ2, ↑RYR2, 
↑SERCA, ↑NCX1

↑RYR2, ↑SERCA; 
↓HCN4

↑CASQ2, 
↑S100A1

Not described ↑SERCA,↑RYR2 No detectable 
changes

↑KCNJ2

T-tubule Adjacent to 
sarcomeres; 

unclear 
alignment

Well developed 
and aligned

Not detectable Adjacent to 
sarcomeres; 

unclear 
alignment

Not detectable Not detectable Not detectable

Resting Vm Not quantified –70 mV –71 mV –60 mV nd –73.5 mV  –80 mV

Max dV/dt Not quantified 23 V/s 38 V/s 148 V/s nd 219 V/s 125 V/s

APD APD80 1000 ms 
at 0.5 Hz pacing

APD90 500 ms ADP80 450 ms APD90 110 ms, 
APD50 60 ms

nd nd APD90 120 ms

AP notch Not detectable Yes Not described Yes nd Yes nd

Ca2+ transient Enhanced Enhanced Visible Enhanced nd nd nd

Ca2+ storage 
and SR release

nd enhanced nd nd nd nd Enhanced

Metabolism Metabolic gene 
expr.

↑PPARA, 
↑PGC1a

↑TFAM, ↑PGC1a ↑COX6A2, 
↑CKMT2, ↑CKM

↑Redox and  
FAO genes

nd nd nd

Mitochondria 
amount

Increase by TEM Increase by TEM Increase by TEM mtDNA increase nd nd nd

Mitochondria 
alignment

Close to 
sarcomeres

Close to 
sarcomeres

nd Close to 
sarcomeres

nd nd Close to 
sarcomeres

Mitochondria 
cristae

nd Well developed Well developed nd nd Immature nd

Mitochondria 
functions

nd OCR and ECAR 
increased

nd Incr. maximal 
OCR and OCR 

reserve

nd nd nd

Proliferation and 
hypertrophy

Cell cycle gene 
expr.

nd nd nd Cell cycle gene 
downregulation

nd nd nd

Proliferation rate nd nd Decrease Decrease nd nd Decrease

CM size Incr. to 735 µm2 Incr. to 1500 µm2 nd nd Incr. to 795 µm2 nd Incr. to 917 µm2

Tissue integration 
and physiology

ICD ICD on  
TEM, Cx43 at  

cell poles

ICD on TEM, 
Cx43 at cell  

poles

NCad at  
cell poles; Cx43 

mislocalized

ICD on TEM; 
Cx43 and NCad 

mislocalized

Primitive ICD  
on TEM

Cx43 
Mislocalized,

Nascent ICD

Contractility 2.1–4.4 mN/mm2 3 mN/mm2 23 mN/mm2 0.3 mN 1.3 mN/mm2 up to 0.15 mN nd

Frank-Starling 
relationship

nd nd Detectable nd Detectable Detectable nd

Force-freq. 
relationship

Flat Positive Flat or slightly 
negative

nd Positive Flat nd

Response to β-
agonists

Incr. contraction 
rate & amplitude

Incr. contraction 
rate and 

amplitude

nd Incr. contraction 
rate & amplitude

Incr. contraction 
rate but not force 

amplitude

Incr. force 
amplitude; rate 
not described

Incr. rate, force  
not described

(Continued )
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Immature cardiomyocytes differ in important ways 
from mature cardiomyocytes in electrophysiology. First, 
the resting membrane potential of immature cardiomyo-
cytes is less negative (≈−50 to −60 mV) as a result of 
insufficient expression of Kir2.1 and Kir2.2.47 Second, 
the upstroke velocity of immature cardiomyocytes (≈15–
30 V/s) is slower due to lower activity and expression of 
SCN5A and other sodium channels.48,49 Third, the plateau 
phase of the action potential is longer in mature cardio-
myocytes, partly due to higher expression of Cav1.2 core 
component CACNA1C50 and alternative splicing of its 
auxiliary subunit CACNB2.51

Membrane depolarization is coupled to sarcomere 
contraction through Ca2+-induced Ca2+ release. In sys-
tole, Cav1.2 activation allows a small amount of extra-
cellular Ca2+ to enter cells, where it activates the RYR2 
(ryanodine receptor 2) to release Ca2+ from the sarco-
plasmic reticulum (SR, specialized endoplasmic reticulum 
in cardiomyocytes). In diastole, Ca2+ is cleared from the 
cytosol to the SR via the SERCA2 (sarco/endoplasmic 
reticulum Ca2+-ATPase) and to the extracellular space via 
the NCX (Na+-Ca2+ exchanger).

Ca2+-induced Ca2+ release occurs in proximity to 
plasma membrane. In small, immature cardiomyocytes 
where sarcomeres are relatively proximal to the cell sur-
face, Ca2+ that is released at the cell periphery is suf-
ficient to trigger sarcomere contraction. However, as 
cardiomyocytes enlarge and sarcomeres expand toward 
the cell interior, Ca2+ that is released at the cell periph-
ery cannot rapidly activate interior sarcomeres. To solve 
this problem, cardiomyocytes evolved transverse-tubules 
(T-tubules; Figure 2), which are invaginations of plasma 
membrane that penetrate transversely into the center of 
mature cardiomyocytes. This structural specialization jux-
taposes the plasma membrane with subdomains of SR to 
form dyads, where Cav1.2 and RYR2 cluster in proxim-
ity to form Ca2+ release units. These structural special-
izations allow the action potential to travel rapidly along 

T-tubules to the interior of cells, where they trigger dyads 
to release Ca2+ in close proximity to sarcomeres.

The structural basis of T-tubule maturation is poorly 
understood. CAV3 (caveolin-3) is thought to regulate 
plasma membrane invagination,52 but T-tubules still form 
in Cav3 knockout mice.53 BIN1 (bridging integrator 1) 
increases membrane curvature of T-tubules in mice,54 
and BIN1 overexpression induces T-tubule-like struc-
tures in PSC-CMs.55 However, the transverse alignment 
of T-tubules is preserved in Bin1 knockout cardiomyo-
cytes in mice.54 JPH2 (Junctophilin 2) is required to juxta-
pose T-tubule and SR membranes,56 but JPH2 disruption 
only results in mild cell-autonomous loss of T-tubule 
organization in murine cardiomyocytes.57 Although 
ACTN2 (α-actinin-2) is essential for T-tubule organiza-
tion,22 how T-tubules are anchored to Z-lines remains 
unclear. A recent study identified a Z-line component 
NEXN (nexilin) as a new regulator of T-tubules.58 Whether 
NEXN mediates Z-line-T-tubule association remains to be 
determined.

Whereas mature ventricular cardiomyocytes exhibit 
low automaticity, immature cardiomyocytes, and PSC-
CMs spontaneously beat, a phenotype that likely contrib-
utes to arrhythmia when PSC-CMs are transplanted in 
myocardial infarction models.7 Multiple factors contribute 
to the automaticity of PSC-CMs, including the expres-
sion of pacemaker channels such as HCN4 (hyperpo-
larization-activated cyclic nucleotide-gated potassium 
channel 4), the resting membrane potential that is closer 
to the action potential activation threshold, and sponta-
neous Ca2+ release, which drives membrane depolariza-
tion through the Ca2+-Na+ exchanger.59

Metabolic Maturation
An adult human heart is estimated to use ≈6 kg 
ATP per day,60 with the primary consumers being 
myosin ATPases, which are needed for sarcomere 

Postpause 
potentiation

nd Present nd nd nd Present nd

Conduction vel. 
(cm/s)

up to 40 25 25.1 nd 2.76 nd 15

Inotropic 
response to 
extracellular  
Ca2+ (EC50)

nd ≈0.4 mmol/L nd 1 mmol/L nd 0.6 mmol/L nd

3D, 3-dimensional; AP, action potential; APD, action potential duration; CASQ2, calsequestrin 2; CKMT, creatine kinase S-type, mitochondrial; CM, cardiomyocyte; 
COX6, cytochrome c oxidase subunit 6, mitochondrial; Cx43, connexin 43; Dex, dexamethasone; ECAR, extracellular acidification rate; expr., expression; HCN4, 
hyperpolarization-activated cyclic nucleotide-gated potassium channel 4; hiPSC-CM, human induced PSC-derived cardiomyocyte; ICD, intercalated disc; IGF1, insulin-
like growth factor 1; incr., increase; MLC, myosin light chain; mtDNA, mitochondrial DNA; Myh, myosin heavy chain; NCad, N-cadherin; NCX, Na+-Ca2+ exchanger; nd, not 
described; OCR, oxygen consumption rate; PGC1, peroxisome proliferator-activated receptor gamma coactivator 1; PPAR, peroxisome proliferator-activated receptor a; 
RYR2, ryanodine receptor 2; SERCA, sarco/endoplasmic reticulum Ca2+-ATPase; SR, sarcoplasmic reticulum; stim, stimulation; T3, triiodothyronine; TEM, transmission 
electron microscopy; TFAM, transcription factor A, mitochondrial; TNN, troponin; TTN, titin; T-tubules, transverse tubules; vel., velocity; and Vm, membrane voltage.

Table 2. Continued

Reference Huang et al26

Ronaldson-
Bouchard  

et al4,27 Shadrin et al28 Mills et al29 Ruan et al30

Hirt et al, 
Mannhardt et 
al, Lemoine et 

al31–33 Nunes et al34
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Figure 2. Structural maturation of cardiomyocytes (CMs).
A, A schematic view of sarcomere components in mature CMs (top) and spatial relationship between sarcomeres and transverse-tubule (T-tubule; 
T), sarcoplasmic reticulum (S) and mitochondria in mature CMs (bottom). Bottom left, A view across the middle of a myofibril. Bottom right, 
A view on the cytoplasmic surface of a myofibril. B, In situ confocal images of murine myocardium at postnatal day 6 (P6) and P20. Sarcomere 
Z-lines were labeled by adeno-associated virus-Actn2-GFP (green fluorescent protein) infection. Mitochondria, T-tubules, and nuclei were 
stained by TMRM (polarized mitochondria), FM 4-64 (plasma membrane), and Hoechst (DNA), respectively, through Langendoff perfusion. 
Merged images highlight T-tubule-sarcomere and mitochondria-sarcomere associations that are established during postnatal maturation. Actn2 
indicates α-actinin-2; FM 4-64, N-(3-triethylammoniumpropyl)-4-(6-(4-(diethylamino) phenyl) hexatrienyl) pyridinium dibromide; TMRM, 
tetramethylrhodamine, methyl ester; and TPM, tropomyosin.
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contraction, and SERCA, which drives Ca2+ clear-
ance and sarcomere relaxation. This ATP is primarily 
produced through oxidative phosphorylation using 
lipid substrates.61

In maturation, cardiomyocytes undergo multiple 
adaptations to enable a high and sustained rate of ATP 
production. Chief among them is increased number 
and size of mitochondria, which occupy up to 40% of 
cell volume.62 The morphology and size of mitochon-
dria are controlled by their fusion and fission. Perturba-
tion of profusion proteins such as MFN1/2 (mitofusin 
1/263,64) or overexpression of profission proteins, such 
as DRP1 (dynamin-related protein 1),65 resulted in 
decreased mitochondrial size in maturing cardiomyo-
cytes. Mitochondria also become associated with sar-
comeres during maturation (Figure 2). Sarcomere 
disassembly caused decreased mitochondrial size,21 sug-
gesting a functional link between sarcomeres and mito-
chondrial morphology. Mitochondria are also attached to 
SR, potentially through ER-mitochondria contact sites. 
This close organization leads to efficient ATP transport 
from mitochondria to ATPases in sarcomeres and SR.66

Mature mitochondria contain densely organized cris-
tae, the foldings of the inner mitochondrial membranes 
that house the electron transport chain, and ATP syn-
thase. By contrast, in immature cardiomyocytes, which 
primarily produce ATP through glycolysis, mitochondria 
exhibit few and poorly aligned cristae.67 Cristae matura-
tion requires an array of molecules such as OPA1 (optic 
atrophy 1),68,69 the MICOS (mitochondrial contact site 
and cristae organizing system) complex,70 and cardio-
lipin-based lipid-protein microdomains.71 ATP synthase72 
may also drive cristae curvature formation.

The metabolic transition from immature cardiomyo-
cytes to mature cardiomyocytes is driven by activa-
tion of metabolic transcriptional regulators including 
Ppargc1a/b, Ppara, Nrf1/2, and Esrra/b/g,73 upregula-
tion of genes involved in fatty acid metabolism, oxida-
tive phosphorylation, and mitochondrial biogenesis, and 
downregulation of glycolytic genes.74,75 Isoform switching 
also contributes to metabolic maturation. Hexokinase, 
which executes the first committed step of glycolysis, is 
predominantly HK1 (hexokinase 1) in fetal and neonatal 
cardiomyocytes.76 In adult cardiomyocytes, the predomi-
nant isoform is HK2 (hexokinase 2),77 which exhibits less 
glycolytic activity. COX (cytochrome c oxidase) subunit 
8, a component of complex IV of the electron transport 
chain, also switches between COX8A and COX8B iso-
forms in cardiomyocyte maturation,78although the con-
tribution of this switch to cardiomyocyte maturation 
remains to be determined.

Less is known about anabolic metabolism changes 
in cardiomyocyte maturation. Immature, proliferative 
cardiomyocytes create a high demand for nucleotide 
biosynthesis, which is suppressed after cardiomyocytes 
mature. Conversely, high-glucose promotes nucleotide 

biosynthesis through the pentose phosphate pathway 
and inhibits cardiomyocyte maturation.79 Because car-
diomyocyte maturation involves a remarkable increase of 
protein-built components, such as myofibrils, and exten-
sive expansion of lipid bilayers in T-tubules, SR and mito-
chondria, protein and lipid biosynthesis are also expected 
to be highly active. However, little work has been done to 
characterize these two anabolic processes during cardio-
myocyte maturation.

Proliferation-to-Hypertrophy Transition
In mice, cardiomyocyte cell cycle exit occurs within the 
first postnatal week.11 In humans, cardiomyocyte pro-
liferation rate declines rapidly postnatally but does not 
reach the steady-state rate of < 1% per year until the 
second decade of life.80,81 Central cell cycle regulators, 
such as the CDK (cyclin-dependent kinase) complexes, 
are tightly repressed during cardiomyocyte matura-
tion.82 Recently, it was reported that cooverexpression of 
CDK1:CCNB1 (cyclin B1) and CDK4:CCND complexes, 
which activate M phase and G1 to S phase respectively, 
was sufficient to reactivate cardiomyocyte proliferation.82 
This exciting finding awaits confirmation by independent 
groups. The mechanisms that enforce cardiomyocyte 
cell cycle exit include the downregulation of mitogenic 
signals, such as the neuregulin-ErbB (Erb-B2 receptor 
tyrosine kinase) axis,83 and the inhibition of YAP, a potent 
activator of cardiomyocyte proliferation.84,85 During post-
natal cardiomyocyte maturation, YAP activity is restrained 
by Hippo kinases,84,85 interactions with cell adhesion 
complexes,86,87 and nuclear antagonists.88

Despite cell cycle withdrawal, the postnatal heart 
increases in size by ≈30-fold through proportional 
increase of cardiomyocyte volume, a process called 
maturational hypertrophy. The liquid-phase cytoplasm is 
unlikely the major contributor to increased cell volume, 
as mature cardiomyocytes are tightly packed, and myo-
fibrils and mitochondria occupy most intracellular space. 
Myofibril expansion is critical for maturational hypertro-
phy, as the ablation of sarcomeres by Myh6 depletion or 
Actn2 mutation dramatically decreased cardiomyocyte 
size during murine cardiomyocyte maturation.21,22 How-
ever, whether mitochondria biogenesis and enlargement 
cell-autonomously contributes to maturational hypertro-
phy is unclear.21,89

Another hallmark of cardiomyocyte maturation during 
the proliferation-to-hypertrophy transition is polyploidiza-
tion. In murine cardiomyocytes, the final round of the cell 
cycle involves karyokinesis without cytokinesis, leading 
most mature cardiomyocytes (≈90%) to contain 2 diploid 
nuclei (binucleation90,91; Figure 2). By contrast, in adult 
humans, ≈75% of cardiomyocytes are mononuclear, but 
the majority of these nuclei are polyploid due to DNA 
endoreplication without karyokinesis.92,93 This polyploidi-
zation largely develops in the second decade of life.80
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Cardiomyocyte polyploidization negatively correlates 
with cell cycle withdrawal.94 Residual cardiomyocyte cell 
cycle activity in adult hearts resides in the mononuclear 
diploid subset of cardiomyocytes.80,81,94 The introduction 
of a genetic modifier associated with higher mononu-
clear diploid fraction increased cardiomyocyte cell cycle 
activity after adult heart injury.94 Forced cardiomyocyte 
polyploidization by ECT2 (epithelial cell transforming 
2) inhibition, which blocks cytokinesis, is sufficient to 
suppress the proliferative capacity of cardiomyocytes 
in regeneration.95,96 For many cell types, the ploidy of a 
cell is positively correlated with cell size97; thus, cardio-
myocyte polyploidization likely promotes maturational 
hypertrophy. Consistent with this hypothesis, the induc-
tion of cardiomyocyte polyploidization was sufficient to 
increase cardiomyocyte size.95,96 Together, cardiomyocyte 
polyploidization is partially causative for both cardiomyo-
cyte cell cycle withdrawal and maturational hypertrophy 
in cardiomyocyte maturation.

Cardiomyocyte Integration into a Mature Tissue
Maturational integration of cardiomyocytes into cardiac 
tissues require the formation of specialized cardiomyo-
cyte-cardiomyocyte junctions called intercalated discs 
(ICDs), which occurs 2 to 3 weeks after birth in mice. 
ICDs are hybrid junctions comprising 3 major types of 
cell adhesions: fascia adherens, desmosomes, and gap 
junctions.98 Fascia adherens comprise N-cadherin and 
its associated proteins. Desmosomes comprise desmo-
glein-2, desmocollin-2, and their ancillary proteins, such 
as plakoglobin, plakophilin-2, and desmoplakin. Gap 
junctions are composed of connexin 43. Although fas-
cia adherens and desmosomes mechanically couple the 
actin cytoskeleton and intermediate filaments of neigh-
boring cardiomyocytes, gap junctions mediate propaga-
tion of electrical and small molecule signals between 
cardiomyocytes.

Immature cardiomyocytes lack ICDs, and ICD compo-
nents are either not expressed, localized to the interior 
of cells, or throughout the cell surface. During cardio-
myocyte maturation, these molecules redistribute to cell 
termini to form ICDs. The mechanisms that regulate the 
targeted localization of ICD components to cardiomyo-
cyte termini are incompletely elucidated but likely involve 
protein trafficking along microtubule highways extending 
from the trans-Golgi network to cell termini.99

Cardiomyocyte integration into tissues also requires 
attachment to the ECM (extracellular matrix) through 
specialized focal adhesion-like structures called costa-
meres.100 The transmembrane adaptors of costameres 
include both the integrin complexes and the dystrophin-
associated glycoprotein complexes, which anchor to sar-
comere Z-lines and nonsarcomere cytoskeleton at the 
lateral cardiomyocyte membrane.

Beyond tissue integration, ICDs and costameres are 
likely to play additional roles in cardiomyocyte matura-
tion. For example, both ICDs and costameres harbor vin-
culin-based actomyosin organizers that are essential for 
sarcomere assembly,101 and potentially mediate longitu-
dinal and lateral sarcomere expansion, respectively. ICDs 
and costameres are also critical sensors of biophysical 
signals.98,100 Thus, further investigation of ICD and costa-
mere is essential to understand how biophysical signals 
promote cardiomyocyte maturation (see next section).

REGULATION OF CARDIOMYOCYTE 
MATURATION
Cardiomyocyte maturation involves a spectrum of diverse 
cellular events that occur concurrently. The mechanisms 
that activate these events and integrate them into a coor-
dinated program is an overarching question for cardio-
myocyte maturation research.

Microenvironmental Instruction
The microenvironment of the maturing myocardium pro-
vides necessary and sufficient information to instruct 
cardiomyocyte maturation. This notion is supported by 2 
lines of evidence. First, in vitro culture of primary mature 
cardiomyocytes leads to loss of hallmarks of maturity.102 
Second, immature cardiomyocytes developed toward an 
adult-like state after being transplanted into maturing 
myocardium.103 These studies provide the logical basis to 
search for cardiomyocyte maturation cues by dissecting 
the physicochemical properties of maturing myocardium.

Biophysical Cues
Adult cardiomyocytes exhibit a rod shape with an average 
length-to-width ratio of 7:1.104 This unique shape cannot 
be solely explained by the cell-autonomous effect of sar-
comere elongation, as cardiomyocytes with sarcomere 
ablation due to Myh6 knockout retained an elongated 
morphology in a genetic mosaic model in mice, although 
the cell width was drastically decreased.21 Both neona-
tal and adult cardiomyocytes are elongated in vivo but 
cannot maintain this shape after cell culture. PSC-CMs 
on regular cell culture dishes are round- or triangular- 
shaped and require physical cues to adopt a rod shape. 
Therefore, the microenvironment of myocardium estab-
lishes geometric cues that induce uniaxial cardiomyocyte 
elongation (Figure 3A).

Patterning cardiomyocytes to adopt a rod-shaped mor-
phology promotes cardiomyocyte maturation. For exam-
ple, PSC-CM growth on rectangular micropatterns105 
or uniaxially aligned ridges and grooves106,107 were suf-
ficient to improve sarcomere organization and contrac-
tile and electrophysiological function of cardiomyocytes 
in a 2-dimensional system. Cardiomyocyte maturation 
was further improved by assembling cardiomyocytes 

D
ow

nloaded from
 http://ahajournals.org by on A

pril 23, 2020



REVIEW
Guo and Pu Cardiomyocyte Maturation in Development

Circulation Research. 2020;126:1086–1106. DOI: 10.1161/CIRCRESAHA.119.315862 April 10, 2020  1095

into 3-dimensional tissue with anisotropically directed 
strain, such as engineered heart tissue108,109 or cardiac 
microtissue.108,109

The viscoelastic properties of ECM also modulate car-
diomyocyte maturation (Figure 3A). The elastic modulus 
of ECM progressively increases from neonatal (<10 
kPa) to adult (≈25 kPa) heart.110 Culturing cardiomyo-
cytes on matrix with tunable elastic moduli showed that 
physiological matrix stiffness is optimal for cardiomyo-
cyte maturation parameters such as sarcomere organiza-
tion, Ca2+ handling, and contractility.111–113

Maturing cardiomyocytes experience escalating 
mechanical force during development.114 Cyclic mechan-
ical stress during systole and passive stretch during 
diastole both induced cardiomyocyte maturation in cell 
culture115–117 (Figure 3A). Mechanical force not only 

improved structural maturation but also induced gene 
expression changes.115–117 A recent study showed that 
cardiac contractile force regulated the distribution of 
vinculin and activated slingshot protein phosphatase 1, 
and the actin-depolymerizing factor cofilin to promote 
myofilament maturation.118 How mechanotransduction 
pathways convert mechanical force into transcriptional 
changes remains to be clarified.

Electrical pacing also enhances the ultrastructure and 
gene expression of cultured cardiomyocytes (Figure 3A), 
as well as their contractile, electrophysiological, and 
metabolic activity.119–121 A recent study reported the pro-
duction of adult-like cardiomyocytes after 3-dimensional 
engineered heart tissue was paced at supraphysiologi-
cal rates from an early point in their differentiation.4,27 
The striking degree of maturation achieved in this 

Figure 3. Representative environmental cues that regulate cardiomyocyte (CM) maturation.
A, Key biophysical factors that affect CM maturation. B, Critical biochemical cues that regulate CM maturation. Representative signal receptors, 
messengers, and transcriptional regulators are also depicted. AKT indicates AKT serine/threonine kinase; ECM, extracellular matrix; ERK, 
extracellular signal-regulated kinase; FA, fatty acid; FABP, fatty acid-binding protein; GR, glucocorticoid receptor; GRE, glucocorticoid responsive 
element; HIF, hypoxia-inducible factor; IGF, insulin-like growth factor; IGF1R, insulin-like growth factor 1 receptor; INSR, insulin receptor; MEK, 
mitogen-activated protein kinase kinase; mTOR, mechanistic target of rapamycin; PI3K, phosphatidylinositol 3-kinase; PPAR, peroxisome 
proliferator-activated receptor; PPRE, peroxisome proliferator response element; RAF, Raf proto-oncogene serine/threonine protein kinase; RAS, 
Ras proto-oncogene, GTPase; RXR, retinoid X receptor; THR, thyroid hormone receptor; TRE, thyroid hormone response element; and VHL, Von 
Hippel-Lindau tumor suppressor.
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study requires further validation and replication by other 
groups. The mechanisms by which electrical stimula-
tion enhances cardiomyocyte maturation remain poorly 
explored. A key unanswered question is whether electri-
cal pacing directly impacts cardiomyocyte maturation or 
acts indirectly through induction of mechanical stress.

Biochemical Cues
Among the best characterized biochemical cues that 
promote cardiomyocyte maturation is the thyroid hor-
mone T3 (triiodothyronine). The serum level of T3 rises 
dramatically in the perinatal period. T3 exerted a broad 
impact on cardiomyocyte maturation, including isoform 
switching of myosin heavy chain and TTN,122,123 induc-
tion of SERCA expression, hypertrophy, and cell poly-
ploidization.12,13 T3 treatment was sufficient to enhance 
cardiomyocyte contractility, Ca2+ handling, and mito-
chondrial respiration in vitro.124,125 One study linked a 
proliferative burst of mouse cardiomyocyte proliferation 
on postnatal day 15 to a transient surge of thyroid hor-
mone126; however, other groups have not replicated the 
proposed surge of proliferating cardiomyocytes.127,128 
The major thyroid hormone receptors in the heart are 
NRs (nuclear receptors) that are encoded by Thra and 
Thrb (Figure 3B). Inactivation of Thra cell-autonomously 
suppressed cardiomyocyte maturation.25

Similar to T3, glucocorticoids also modulate car-
diomyocyte maturation.129 Glucocorticoids are ligands 
for the glucocorticoid receptor, another NR encoded 
by Nr3c1. Mutation of Nr3c1 impaired myocyte align-
ment, disruption of sarcomere organization, and the 
expression of genes regulating sarcomere assembly 
and Ca2+ handling.130

IGFs (insulin-like growth factors) regulate cardiomyo-
cyte maturation through the IGF1R (insulin-like growth 
factor 1 receptor) and the INSR (insulin receptor), which 
are receptor tyrosine kinases that signal through the 
PI3K-AKT and RAF-MEK-ERK pathways. IGF1 is pre-
dominantly produced in the liver, and also locally pro-
duced in the heart.131 Circulating IGF1 quickly increases 
after birth in response to growth hormone132,133; changes 
to local production of cardiac IGF1 were not well 
described. Overexpression of IGF1R in cardiomyocytes 
caused physiological hypertrophy.134 Double knockout of 
INSR and IGF1R in murine cardiomyocytes resulted in 
early-onset dilated cardiomyopathy within a month after 
birth, with disrupted sarcomere and mitochondrial mor-
phology and reduced heart function.135 However, deletion 
of either INSR or IGF1R alone did not cause phenotypic 
abnormalities, consistent with functional redundancy.

Circulating fatty acids also increase at birth, and this 
could serve as a biochemical signal for cardiomyocyte 
maturation. Culture of engineered cardiac tissues with 
palmitate, the most abundant long-chain free fatty acid 
in the neonatal circulation,136 matured multiple param-
eters, including gene expression, contractile force, action 

potential, Ca2+ transient, and oxidative respiration.29 In 
another study, treatment of PSC-CMs with palmitate-
albumin complexes along with carnitine, which facilitates 
mitochondrial fatty acid transport, promoted structural 
and functional maturation, suggesting that in vitro pro-
motion of oxidative phosphorylation stimulates overall 
cardiomyocyte maturation.137 However, perturbation of 
metabolic maturation did not impair structural matura-
tion in a cell-autonomous manner in vivo, since neona-
tal, mosaic ablation of genes essential for mitochondrial 
function (Tfam), or dynamics (Mfn1/2) did not impair 
structural maturation of the mutant cardiomyocytes.21,89

Oxygen tension is another environmental cue that 
modulates CM maturation. Increased oxygen tension 
inhibits HIF1α (hypoxia-inducible factor 1α) activity 
and promotes the metabolic switch to oxidative phos-
phorylation during murine heart development,138 whereas 
hypoxia impaired PSC-CMs differentiation and matura-
tion in vitro.139 Inhibition of HIF1α and its downstream 
target lactate dehydrogenase A promoted human-
induced PSC-cardiomyocyte maturation, enhancing not 
only metabolism but also gene expression, sarcomere 
organization, and contractility.140

Biochemical signals function synergistically to pro-
mote cardiomyocyte maturation. For example, T3 and 
dexamethasone, a synthetic glucocorticoid, in combina-
tion with culture on matrigel mattresses cooperatively 
triggered cardiomyocyte maturation by inducing T-tubule 
formation.141 A cocktail of T3, dexamethasone, and IGF1 
induced several adult features in induced PSC cardio-
myocyte cultured in 3-dimensional cardiac tissues.3 
Cross-talk between T3 and AKT-PI3K, a downstream 
branch of IGF1 signaling, stimulated TTN isoform switch-
ing in cultured, late gestation rat cardiomyocytes.122 Thus, 
a sophisticated signaling network is present that inte-
grates diverse extracellular signals into a robust and 
coordinated program of cardiomyocyte maturation.

Noncardiomyocytes
Although cardiomyocytes occupy ≈70% to 85% of myo-
cardial volume, they constitute only ≈20-30% of the total 
cell number.80,142,143 Numerically, noncardiomyocytes, 
including endothelial cells (64%), cardiac fibroblasts 
(27%), and leukocytes (9%), are the major cell types in 
the heart.143 In the fetal heart, cardiomyocytes constitute 
a higher fraction of cells, with the proportion declining 
during maturation due to the greater proliferation of 
noncardiomyocytes.

Noncardiomyocytes regulate cardiomyocyte matu-
ration, as coculture of cardiomyocytes with noncar-
diomyocytes promotes cardiomyocyte maturation in 
vitro.144–146 The impact of noncardiomyocytes on cardio-
myocyte maturation could occur through direct physi-
cal adhesion and through paracrine molecules that are 
secreted from noncardiomyocytes and act on cardio-
myocytes.146 In addition, noncardiomyocytes build the 
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microenvironment that delivers biophysical and bio-
chemical cues to cardiomyocytes. For example, cardiac 
fibroblasts create the appropriate ECM to support car-
diomyocyte maturation, and endothelial cells construct 
coronary vasculature that transport circulating signals 
to instruct cardiomyocyte maturation.

Intracellular Regulation
Transcriptional Regulation of Gene Expression
The coordination of diverse phenotypic changes during 
cardiomyocyte maturation and the association of those 
changes with altered gene expression suggest an over-
arching transcriptional program that orchestrates cardio-
myocyte maturation.

Several transcriptional regulators of cardiomyocyte 
maturation have been identified. One of these is SRF 
(serum response factor).21 In murine cardiomyocytes 
undergoing maturation, SRF depletion resulted in a 
wide spectrum of transcriptional dysregulation, includ-
ing defective sarcomere isoform switching, global 
downregulation of the transcriptional programs of lipid 
metabolism, mitochondria biogenesis and oxidative 
respiration, and the reversal of maturational changes 
of key electrophysiological and Ca2+ handling genes, 
such as upregulation of Hcn4 and downregulation of 
Kcnj2, Serca2a, and Ryr2.21 Structurally, SRF depletion 
impaired sarcomere expansion, T-tubule formation, and 
mitochondrial organization.

The broad impact of SRF on nearly every aspect of 
cardiomyocyte maturation is partly due to its key role in 
regulating sarcomere genes. Sarcomere disassembly by 
mosaic inactivation of the major Z-line protein ACTN2 not 
only recapitulated structural cardiomyocyte maturation 
defects but also the transcriptomic signature of mosaic 
SRF depletion.22 This relationship demonstrates that sar-
comere-based signaling impacts gene transcription and 
highlights a hierarchical organization of the subprograms 
of cardiomyocyte maturation: sarcomere maturation is 
upstream of most other aspects of cardiomyocyte matu-
ration,21 whereas metabolic maturation was dispensable 
for structural maturation in vivo.21,89

Three myocardin-family transcriptional regulators, 
MYOCD (myocardin), MRTFA (myocardin-related tran-
scription factor A), and MRTFB, are major coactivators 
of SRF in cardiomyocytes.147 MRTFA and MRTFB are 
functionally redundant. Mrtf–/–; Mrtfbfl/fl; Myh6Cre mice 
caused lethality of most mutants within a month after 
birth.148 Myocdfl/fl; Myh6Cre mice developed later onset, 
lethal cardiomyopathy, with a median survival of about 
10 months.149 Although Mrtfa/b double knockout mice 
exhibit a more severe cardiac phenotype than Myocd 
mutant mice, both mice exhibit cardiac phenotypes 
that are less severe than Srf knockout mice, suggest-
ing a synergistic role of all 3 factors in SRF activation 

and cardiomyocyte maturation. The MRTF (myocardin-
related transcription factor)-SRF axis could convert 
mechanical stress into transcriptional changes150; thus, 
MRTF-SRF signaling potentially mediates regulation of 
cardiomyocyte maturation in response to biomechani-
cal cues, including mechanical stretch and ECM matrix 
stiffness.

A recent transcriptomic analysis revealed another 
SRF-binding transcription cofactor, HOPX (homeodo-
main-only protein), as a novel activator of cardiomyocyte 
maturation, especially in the process of myofibrillar iso-
form switching and cardiomyocyte hypertrophy.151 In vivo, 
overexpression of HOPX in cardiomyocytes resulted in 
progressive concentric cardiac hypertrophy with pre-
served systolic function,152 whereas Hopx knockout 
caused partial embryonic lethality,153,154 with postnatal 
survivors exhibiting normal cardiac contractility and car-
diomyocyte hyperplasia due to delayed cell cycle exit.154 
Paradoxically, HOPX was classically thought to be a 
transcriptional corepressor that reduces SRF-DNA bind-
ing.153,154 Further studies are necessary to determine 
how SRF-HOPX interaction impacts cardiomyocyte 
maturation.

SRF functions in synergy with other transcrip-
tion factors. For instance, SRF ChIP-Seq (chroma-
tin immunoprecipitation followed by sequencing) in 
maturing hearts revealed coenrichment of GATA and 
MEF2 motifs.21 GATA4 (GATA-binding protein 4) and 
GATA6 are the major GATA family transcription factors 
expressed in cardiomyocytes, and these factors are 
redundantly essential for neonatal cardiomyocyte mat-
uration.25,155 Four MEF2 (myocyte enhancer factor 2) 
family transcription factors, MEF2A≈D, are expressed 
in hearts,156 and their functions can be factor-specific, 
overlapping, or, in some cases, antagonistic.157,158 A 
systematic comparison has yet to be performed to 
determine the overlapping and unique roles of MEF2 
factors in cardiomyocyte maturation.

In addition to SRF-related factors, NRs are another 
major group of transcription regulators that control car-
diomyocyte maturation. Among these factors, thyroid 
hormone receptors and glucocorticoid receptors mediate 
the role of T3 and glucocorticoids in cardiomyocyte mat-
uration, as described in the previous section. Additional 
NRs play key roles in metabolic maturation. One family 
of such factors is PPARs (peroxisome proliferator-acti-
vated receptors), which form heterodimers with retinoid 
X NRs to activate and balance the transcription of genes 
involved in fatty acid and carbohydrate metabolism.159,160 
The ligands of PPARs are fatty acid metabolites161; thus, 
PPARs probably mediate the impact of circulating fatty 
acids on cardiomyocyte maturation. The ERRs (estrogen-
related receptors α, β, and γ) are another group of NRs 
essential for the maturational switch to oxidative respira-
tion, by activating genes involved in fatty acid oxidation, 
citric acid cycle, electron transport chain, ATP synthase, 
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and mitochondrial dynamics.162,163 These factors belong 
to the orphan NR family and do not bind to estrogen. 
Interestingly, myofibril and Ca2+ handling genes are also 
direct downstream targets of ERRs.162,163 Both PPARs 
and ERRs directly interact with PGC1α/β (PPARγ 
coactivator α/β), encoded by Ppargc1a and Ppargc1b, 
which are master regulators of both oxidative respira-
tion and its associated mitochondrial biogenesis.73 Inter-
estingly, a recent study showed additional functions of 
PGC1/PPARα (peroxisome proliferator-activated recep-
tor a) in the maturation of calcium handling and hyper-
trophy, implicating broader roles of these factors beyond 
metabolism.164

Epigenetic mechanisms, such as DNA methylation 
and covalent histone modifications, exert a profound 
impact on transcriptional regulation. DNA hypermeth-
ylation is associated with gene silencing in cardio-
myocyte maturation, whereas DNA demethylation 
results in gene activation.75,165,166 Activating histone 
modifications H3K27ac, H3K4me1, H3K4me3, and 
H3K9ac are associated with actively expressed genes 
in maturation,165,167 whereas repressive histone marks 
H3K27me3 and H3K9me2 are maintained or acquired 
by inactivated genes.165,167–170 Treatment of cultured 
human cardiac progenitor cells with polyinosinic-poly-
cytidylic acid yielded PSC-CMs with enhanced matu-
rity, which was attributed to epigenetic priming that 
enhanced Notch signaling and expression of cardiac 
myofilament genes.171 Recently, a clustered regularly 
interspaced, short palindromic repeats (CRISPR)/
Cas9-based forward genetic screen in vivo identified 
RNF20/40 (ring finger protein 20/40) as a novel epi-
genetic regulator of cardiomyocyte maturation. This 
enzyme deposits histone H2B lysine 120 monoubiquiti-
nation marks at genes that are active in cardiomyocyte 
maturation.25 Mutations that disrupt this pathway cause 
congenital heart disease,24 suggesting that the same 
mutations that cause congenital heart disease could 
also impact cardiomyocyte maturation and late cardiac 
outcomes.

Chromatin organization changes are also correlated 
with transcriptional changes in cardiomyocyte matura-
tion. ATAC-Seq (assay for transposase-accessible chro-
matin using sequencing) revealed decreased chromatin 
accessibility of silenced genes such as cell cycle genes 
between neonatal and adult hearts, whereas metabolic 
and muscle contraction genes acquired a more open 
chromatin state in mature hearts.172 Histone remodel-
ing factor BRG1 (BRM/SWI2-related gene 1) modu-
lates myosin heavy chain isoform switching.173 Mutation 
of CTCF (CCCTC-binding factor), a crucial regulator of 
chromatin-architecture, was recently reported to cause 
premature activation of the cardiomyocyte maturation 
program in embryonic cardiomyocytes.174

Posttranscriptional Regulation of Gene Expression
RNA splicing is a critical regulatory component of cardio-
myocyte maturation, as isoform switching often occurs 
through alternative splicing. One representative splicing 
regulator is RBM20 (RNA-binding motif protein 20), 
mutation of which causes dilated cardiomyopathy.175–177 
RBM20 is essential for proper splicing of Ttn transcripts 
and other maturationally regulated genes.175,178

Additional splicing regulators could potentially impact 
cardiomyocyte maturation: CELF (CUGBP Elav-like 
family member) proteins are downregulated in heart 
development, whereas MBNL (muscleblind-like splic-
ing regulator) proteins are upregulated. The antagonis-
tic regulation of these 2 splicing regulators179 has been 
proposed to trigger a large fraction of developmental 
splicing changes and to be essential for T-tubule organi-
zation and Ca2+ handling.180,181 Serine/arginine-rich fam-
ily of splicing factors, including SRSF1,182 SRSF2,183 and 
SRSF10,184 were each shown to regulate postnatal heart 
development by modulating Ca2+ handling genes. Car-
diomyocyte-specific Hnrnpu knockout resulted in splic-
ing defects in Ttn and Ca2+ handling genes and triggered 
perinatal dilated cardiomyopathy.185 The RNA splicing 
regulator RBFOX1 (RNA-binding Fox-1 homolog 1) 
markedly increases in expression during cardiomyocyte 
maturation180,186 and is another potential activator of car-
diomyocyte maturation.187

MicroRNA (miRNA)-based mRNA silencing is 
another mechanism that modulates gene expression in 
cardiomyocyte maturation. For example, miR-1, a miRNA 
enriched in mature cardiomyocytes, facilitated electro-
physiological maturation in stem cell–derived cardio-
myocytes in vitro.188 Let-7 (Lethal-7) family miRNAs 
were highly enriched in cardiomyocytes matured for 1 
year in vitro, and they were necessary and sufficient to 
promote hypertrophy, sarcomere organization, contractile 
force, and respiratory capacity of cultured PSC-CMs.189 
Coculture of cardiomyocytes with endothelial cells pro-
moted cardiomyocyte maturation in association with 
upregulation of multiple miRNAs.145 Overexpression of 
4 such miRNAs (miR-125b-5p, miR-199a-5p, miR-221, 
and miR-222) in PSC-CMs resulted in improvement of 
several maturation hallmarks, such as Myh6/7 switch-
ing, sarcomere alignment, mitochondrial cristae forma-
tion, and improved Ca2+ handling.145 Recently, a new 
miRNA maturation cocktail that overexpressed Let-7i 
and miR-452 and repressed miR-122 and miR-200a 
was shown to promote transcriptomic maturation, as well 
as contractility, cell size, and fatty acid oxidation, without 
sharing predicted target genes with previous microRNA 
cocktails.190

Cardiac protein synthesis is very active at fetal and 
neonatal stages, but regulation of protein translation, 
modification, and stability in cardiomyocyte maturation 
have been poorly studied. Recent advances in pro-
teomics have started to characterize protein changes 
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in cardiomyocyte maturation.191–193 Integration of these 
data with RNA-Seq (RNA sequencing) and Ribo-Seq 
(ribosome profiling) analyses will provide an improved 
understanding of regulation at the protein level.

Ultrastructural Regulation
Major ultrastructural maturation hallmarks—myofibrils, 
mitochondria, and T-tubules—are not independent of 
each other. As the major cytoskeletal structures of car-
diomyocytes, myofibrils are essential for the organiza-
tion of other intracellular structures. Mutagenesis of 
key myofibril genes, such as Myh6 and Actn2, impaired 
mitochondrial enlargement, as well as the organization 
of T-tubules.21,22 By contrast, perturbation of T-tubule (by 
mutagenesis of Jph257) or mitochondria (by mutagenesis 
of Mfn1/221 or Tfam,89 or by overexpression of Drp121) 
did not impair myofibril organization. Thus, proper sar-
comere organization and expansion is central to overall 
structural maturation.

MODEL SYSTEMS TO STUDY 
CARDIOMYOCYTE MATURATION
Innovations in the model systems and techniques 
used to study cardiomyocyte maturation will fuel 
future discoveries. Here we review some of the recent 
advances in model systems used to study cardiomyo-
cyte maturation.

Mouse Genetic Mosaic and Cas9-Mediated 
Somatic Knockout Models
Genetically modified mice have been gold standards 
to understand mammalian heart development. This 
approach is particularly important in cardiomyocyte mat-
uration research because, to date, no in vitro system can 
induce, or even maintain, full maturity of cardiomyocytes. 
However, traditional genetic manipulation of the murine 
heart has several caveats. First, it is slow and expensive 
to generate or obtain alleles to knockout each gene of 
interest. Achieving spatiotemporal control of the knock-
out in perinatal cardiomyocytes requires further complex-
ity. Second, organ-wide mutagenesis of a gene essential 
for cardiomyocyte maturation often triggers lethality or 
secondary effects that can confound identification of the 
direct functions of the gene. This is particularly problem-
atic in cardiomyocyte maturation research as the sec-
ondary effects of heart dysfunction, such as fetal gene 
reactivation and mitochondria/T-tubule remodeling, are 
similar to cardiomyocyte maturation defects.57,194

These problems can be circumvented using adeno-
associated virus (AAV), which efficiently and stably manip-
ulates genes in cardiomyocytes following subcutaneous 
or intraperitoneal injection to newborn mice. Gain-of-
function via AAV-directed overexpression is straightfor-
ward. Loss-of-function can be achieved by using AAV 

to deliver CRISPR/Cas9 components (CRISPR/Cas9 
and AAV-mediated somatic mutagenesis, CASAAV, Fig-
ure 4A).57,195 The CRISPR/Cas9 system further reduces 
the need to obtain conditional alleles. This technology 
allows mutagenesis of many genes at once21,57 and even 
high-throughput genetic screening in vivo.25

To pinpoint the direct, cell-autonomous effects of 
gene manipulation, the dose of AAV is titrated so that 
a minority (eg, <15%) of cardiomyocytes are trans-
duced, leaving most cardiomyocytes, and the overall 
cardiac function, unaffected. Single-cell readouts on 
the transduced cells are used to deduce cell-auton-
omous gene function.21,22,25,57,89 In genetic mosaics, 
mutant and control cardiomyocytes are mixed in the 
same heart; thus, analysis is limited to single-cell read-
outs or readouts compatible with a cell purification 
method, such as flow cytometry. These analyses rely 
heavily on the ability to distinguish individual mutant 
and control cells, usually through immunostaining 
of the targeted proteins or introduction of fluores-
cent proteins as surrogate markers. Genetic mosaic 
approaches are most well suited to cell-autonomous 
phenotypes and would difficult to apply to genes that 
produce secreted products.

Engineered Tissue Model
Cardiomyocyte maturation demonstrates substantial 
interspecies differences. For instance, adult zebraf-
ish cardiomyocytes lack T-tubules196 and exhibit much 
lower mitochondrial content14 than mammalian car-
diomyocytes. Mouse and human cardiomyocytes also 
exhibit several distinct maturation features, such as 
Myh6/7 isoform switching, contraction rates, and action 
potential profiles. Therefore, a human model is neces-
sary to validate knowledge that was learned in other 
model organisms.

In addition, a major practical goal of studying car-
diomyocyte maturation is to improve the maturation of 
hPSC-CMs in vitro for translational medicine. The cur-
rent consensus is that 3-dimensional engineered cardiac 
tissues that are assembled by hPSC-CMs, nonmyocytes, 
and ECMs provide the necessary platforms to best 
mature cardiomyocytes in vitro. Additional biochemical 
(T3, dexamethasone, IGF1, palmitate) and biophysi-
cal treatments (electrical pacing; mechanical stress) 
on these engineered tissues are essential to produce 
adult-like cardiomyocytes (Figure 4B, Table 2).3,4 These 
technologies are useful to validate knowledge that is 
generated in animal models and to allow de novo dis-
covery of cardiomyocyte maturation regulators. In vivo 
validation is still necessary to determine the physiologi-
cal relevance of novel cardiomyocyte maturation factors 
that are identified in these tissue models. Importantly, 
factors that drive cardiomyocyte maturation in vitro may 
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incompletely overlap with those that promote maturation 
in vivo during normal heart development.

Disease modeling is another application of these hPSC-
CMs and engineered tissues. The immaturity of these cells 
is an important hurdle to disease modeling. Nevertheless, 
these model systems have yielded important insights into 
disease mechanisms and led to new potential therapeutic 
strategies.197 The properties of the model system, such as 
its electrical or metabolic maturity, should be considered 
with respect to the disease being studied. Key findings 

may require validation in alternative model systems that 
exhibit greater physiological maturity.

Neonatal Xenotransplantation Model
Human PSC-CMs could be matured toward a near-
adult state by transplantation into rat myocardium (Fig-
ure 4C),103,198 which is a promising solution to the partial 
maturation defects observed in in vitro engineered tis-
sue models. However, human PSC-CMs matured by this 

Figure 4. Model systems to study cardiomyocyte (CM) maturation.
A, CRISPR/Cas9 and adeno-associated virus (AAV)–mediated somatic mutagenesis (CASAAV)–based genetic mosaic analysis of murine CM 
maturation in vivo.57 Expression of genome-encoded Cas9-P2A-GFP (green fluorescent protein) was activated by AAV-delivery of single or dual 
gRNAs and Cre, expressed from the cardiomyocyte-specific cTNT promoter (left). When the AAV is given at a low dose, mosaic transduction and 
Cas9-mediated somatic mutagenesis at genes targeted by gRNA(s) occurs (GFP+ cells, middle). The phenotype of single GFP+ cells is then 
analyzed (right, illustrating transverse-tubule and maturational growth defects caused by Srf depletion21). FM 4-64, membrane dye. Left, Reprinted 
from Guo et al.21 Copyright ©2018 (see: http://creativecommons.org/licenses/by/4.0/). B, In vitro maturation of pluripotent stem cell–derived CMs 
(PSC-CMs) by tissue engineering and electrical pacing. Three-dimensional cultured engineered heart tissue was assembled from PSC-CMs (left). 
Elastomeric posts apply anisotropic stress on muscle bundle. Rapid electrical pacing protocol was applied from early in the PSC-CM differentiation 
process (middle), resulting in well organized, mature PSC-CMs, as evaluated by transmission electron microscopy (right). Reprinted from 
Ronaldson-Bouchard et al4 with permission, Copyright ©2018, Springer Nature. C, In vivo maturation of PSC-CMs. Human PSC-CMs expressing 
GFP were injected into the hearts of immunodeficient neonatal rats (left). After several weeks, engrafted PSC-CMs (GFP+, middle) have mature 
morphology (right). Reprinted from Cho et al.103 Copyright ©2017 (see: http://creativecommons.org/licenses/by-nc-nd/4.0/). ECM indicates 
extracellular matrix; hiPSC, human induced PSC-derived cardiomyocyte; P, postnatal day; and WGA, wheat germ agglutinin.
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method exhibit more binucleation than normal human adult 
cardiomyocytes,103 raising the question of whether the 
transplanted human PSC-CMs become rat-like cardiomyo-
cytes or remain human-like. Although some comparisons 
between donor and host cardiomyocytes were docu-
mented,198 a more comprehensive analysis is necessary 
to determine if xenotransplants are viable models to study 
human-specific features of cardiomyocyte maturation.

CONCLUDING REMARKS
Here, we reviewed major hallmarks of cardiomyocyte mat-
uration and known regulators of this process. Although 
differences between immature and mature cardiomyo-
cytes have been well documented, the molecular mecha-
nisms that mediate the change from immature to mature 
states remain incompletely understood. Accumulated evi-
dence demonstrates interdependence between individual 
maturation events. Thus, research in this area should not 
only study individual hallmarks but also how the matu-
ration events are coordinated. With technical advances 
in model systems and increased collaboration between 
basic scientists with tissue engineers, a more compre-
hensive picture of cardiomyocyte maturation is warranted 
in the near future. This effort is critical to design better 
strategies to mature PSC-CM, stimulate cardiomyocyte 
regeneration, and treat diseases that involve cardiomyo-
cyte maturation defects.
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