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Abstract
Cardiac excitation-contraction (EC) coupling, which links plasma membrane depolarization to activation of cardiomyocyte
contraction, occurs at dyads, the nanoscopic microdomains formed by apposition of transverse (T)-tubules and junctional
sarcoplasmic reticulum (jSR). In a dyadic junction, EC coupling occurs through Ca2+-induced Ca2+ release. Membrane depo-
larization opens voltage-gated L-type Ca2+ channels (LTCCs) in the T-tubule. The resulting influx of extracellular Ca2+ into the
dyadic cleft opens Ca2+ release channels known as ryanodine receptors (RYRs) in the jSR, leading to the rapid increase in
cytosolic Ca2+ that triggers sarcomere contraction. The efficacy of LTCC-RYR communication greatly affects a myriad of
downstream intracellular signaling events, and it is controlled by many factors, including T-tubule and jSR structure, spatial
distribution of ion channels, and regulatory proteins that closely regulate the activities of channels within dyads. Alterations in
dyad architecture and/or channel activity are seen inmany types of heart disease. This reviewwill focus on the current knowledge
regarding cardiac dyad structure and function, their alterations in heart failure, and new approaches to study the composition and
function of dyads.
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Introduction

In cardiomyocytes, excitation-contraction (EC) coupling
transduces electrical signals from the sarcolemma into intra-
cellular Ca2+ transients that govern heart muscle contraction.
Electrical signals in the form of the cardiomyocyte action
potential are transmitted along the sarcolemma. Inmammalian
ventricular cardiomyocytes, the sarcolemma forms dense tu-
bular invaginations, transverse (T)-tubules, that penetrate deep
into the cell (Fig. 1A). Ca2+ is primarily released from the
sarcoplasmic reticulum (SR) at specialized domains, the junc-
tional SR (jSR; Fig. 1B and C). These two membrane systems
interface at dyads, the fundamental structural unit that medi-
ates normal EC coupling. In dyads, T-tubules form tight phys-
ical couplings with the terminal cisternae of jSR, with the
membranes separated by a 12 ~ 18-nm-wide cytoplasmic mi-
crodomain, the dyadic cleft (Franzini-Armstrong et al. 1999)

(Fig. 1C and D). This structural organization promotes EC
coupling by facilitating rapid communication between
voltage-gated L-type Ca2+ channels (LTCCs), concentrated
on the T-tubule membrane (Brandt 1985), and Ca2+ release
channels/ryanodine receptors (RYRs), clustered on the junc-
tional sarcoplasmic reticulum (jSR) (Franzini-Armstrong et al.
1999), via Ca2+-induced Ca2+ release (CICR) (Fabiato and
Fabiato 1975) (Fig. 1). Sarcolemmal depolarization activates
LTCCs, which deliver a train of high local Ca2+ pulses (“Ca2+

sparklets”) (Wang et al. 2001) to the RYRs in the jSR. LTCC
Ca2+ sparklets stochastically activate RYRs causing them to
discharge “Ca2+ sparks” (Cheng et al. 1993) from different
dyads, which ultimately summate into global Ca2+ transients
that trigger coordinated sarcomere contraction across the cell
(Bers 2002).

EC coupling and CICR are fundamental to normal car-
diac rhythm and contraction, and disorders of these pro-
cesses contribute to both arrhythmia and heart failure
(Connell et al. 2020). Understanding the molecular regu-
lation of EC coupling and CICR is therefore of critical
importance to understanding cardiac muscle function in
both health and disease. In this review, we will discuss
the architecture and function of cardiac dyads, its alter-
ations in heart diseases, and new approaches to study the
composition and function of dyads.
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Dyad architecture

T-tubule structure

T-tubules were identified by electron microscopy (EM) as
tubular invaginations of the sarcolemmal membrane
(Franzini-Armstrong and Porter 1964). T-tubules communi-
cate with the extracellular space and are composed of trans-
versely oriented tubules (i.e., perpendicular to the long axis of
cardiomyocytes; Fig. 1A), with interconnecting, longitudinal-
ly oriented tubules (Forssmann and Girardier 1970; Sperelakis
and Rubio 1971). The transverse T-tubules are aligned with
the sarcomere Z-lines and have a corresponding spacing of
~1.8 μm, whereas the longitudinal T-tubules have a spacing
of ~0.5 μm (McNutt 1975; Wagner et al. 2012). In ventricular
myocytes, the average diameter of T-tubules, measured by
optical imaging, is 200–400 nm, depending on the species:
mouse, ~200 nm (Wagner et al. 2012); rat, ~250 nm (Soeller
and Cannell 1999); rabbit, ~400 nm (Savio-Galimberti et al.
2008); and human, ~400 nm (Cannell et al. 2006).
Collectively, T-tubules occupy 1–3% of the volume of ven-
tricular cardiomyocytes. Depending on the species, T-tubules

are variably present in atrial cardiomyocytes (Shiels and Galli
2014; Caldwell et al. 2014).

The physiological function of T-tubules depends on a
unique set of ion channels, scaffolding proteins, and cytoskel-
etal structural proteins localized at or neighboring the T-tu-
bules. A key protein of the T-tubules is the LTCC. Eighty
percent of sarcolemma LTCCs are localized at T-tubules
(Pásek et al. 2008a). This localization puts LTCCs in the vi-
cinity of RYR2 Ca2+ release channels in the SR membrane
(see “Sarcoplasmic reticulum”). BIN1, a membrane scaffold-
ing protein that localizes to T-tubules, is required for forward
microtubule-dependent trafficking of LTCCs to T-tubules
(Hong et al. 2010; Fu and Hong 2016). A cardiac-specific
isoform of BIN1 is also required for sculpting of microfolds
in T-tubules, creating microdomains enriched in LTCCs that
attract RYR2 in the adjacent jSR, suggesting that BIN1 con-
tributes to dyad organization (Hong et al. 2014; Caldwell et al.
2014; Hong and Shaw 2017). These BIN1-dependent
microfolds create “slow diffusion zones” or “fuzzy space”
within the T-tubule lumens for Ca2+, K+, and likely other ions,
with important effects on membrane electrophysiology and
cellular Ca2+ handling (Pásek et al. 2008b; Hong et al.
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Fig. 1 Anatomy of cardiac dyads. (A) T-tubule network of mature adult
cardiomyocytes. The mouse heart was perfused with MM-4-64, which
stains the sarcolemma, and optically sectioned and imaged using a con-
focal microscope. Bar = 5 μm. (B) Total sarcoplasmic reticulum (SR)
structure of an adult cardiomyocyte. The dissociated adult mouse cardio-
myocyte was stained using Fluo5N and visualized by structured illumi-
nation microscopy. Note the discrete junctional SR (jSR; yellow arrows)
and the diffusible free SR (fSR; red arrows) and the much brighter
perinuclear envelopes. Bar = 5 μm. (C) Longitudinal section of mouse
left ventricular myocyte in a thin section transmission electron micro-
graph. A T-tubule, shown in cross section, is separated from pancake-
shaped jSR cisternae by a narrow (~12 nm) junctional gap. Electron dense

“foot” structures corresponding to the cytoplasmic domain of RYR2 pro-
trude into the gap. fSR is contiguous with jSR. Bar = 0.5 μm. (D) Cartoon
showing the process of EC coupling. At dyadic junctions, L-type Ca2+

channels (LTCCs) in T-tubules are coupled with RYR2 Ca2+ release
channels in jSR. (1) The action potential depolarizes T-tubule mem-
branes, opening LTCCs. (2) Extracellular Ca2+ enters through LTCCs
into dyadic clefts, resulting in Ca2+-induced Ca2+ release through
RYR2. (3) The resulting increase in [Ca2+]i causes sarcomere contraction.
(4) [Ca2+]i is returned to basal levels by SERCA2a, which actively pumps
Ca2+ back into SR, and by extrusion through the Na+/Ca2+ exchanger,
NCX
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2014). Caveolin-3, which binds sarcolemmal membrane mi-
crodomains known as caveolae and contributes to their spher-
oid morphology, is enriched in T-tubules. Specific receptors
and ion channels, including the β-adrenergic receptor, a sub-
set of LTCCs, and K+ channels, localize to caveolae and con-
tribute to their regulation (Wright et al. 2014). Recently, ca-
veolae were noted to also be present within the T-tubular
membranes, albeit at lower density than on the cell surface
(Burton et al. 2017). However, the specific function of cave-
olae within the T-tubules remains to be determined.

In summary, the T-tubule network enables electrical exci-
tation to rapidly propagate into the cell interior, where it syn-
chronizes Ca2+ release from the Ca2+ store, the SR.
Microdomains within the T-tubules compartmentalize ion
handling proteins, most notably LTCCs, and signaling mole-
cules to precisely tune EC coupling.

Sarcoplasmic reticulum

The SR is a continuous membrane-bounded organelle that
occupies ~1–3.5% of the volume of cardiomyocytes (Bers
2001; Shiels and Galli 2014) (Fig. 1B). The SR comprises at
least two functional elements: free or network SR and jSR.
Free SR makes up most of the SR membrane and takes the
form of interconnected, primarily longitudinal nanotubules
distributed over most of the cell. Near sarcomere Z-lines, the
SR becomes specialized, pancake-like cisterns, the jSR, with
an average length of ~400 nm and a luminal width of ~30 nm
(Brochet et al. 2005). At intracellular dyads, the jSR is sepa-
rated by a narrow (~12 nm) junctional gap from the T-tubules
(Fig. 1C and D) or, at “peripheral couplings,” by a ~30-nm
cleft from the surface membrane (Takeshima 2002). In
cardiomyocytes that lack T-tubules (e .g . , a t r ia l
cardiomyocytes in some species), the corbular SR (non-
junctional SR) containing RYR2 is distributed near sarcomere
Z-lines and participates in CICR by amplifying Ca2+ that en-
ters the cells through LTCC in the surface sarcolemma (Shiels
and Galli 2014; Caldwell et al. 2014).

Transport channels and Ca2+ binding proteins exhibit fine
anatomical segregation in the SR membrane and within the
SR lumen that endows the SR with the power of orchestrating
Ca2+ cycling. The jSR contains RYR2 intracellular Ca2+ re-
lease channels, which are separated from LTCCs on the T-
tubules by the narrow dyadic gap. Individual RYR2 channels
are homotetramers (MW 2.2 MDa) that occupy an area of
about 30 × 30 nm2 (Baddeley et al. 2009). The cardiac SR
Ca2+ is buffered by calsequestrin 2 (CASQ2), a low-affinity,
high-capacity Ca2+ buffering protein that is localized nearly
exclusively within the jSR lumen. In the presence of Ca2+,
CASQ2 forms a linear polymer that binds 20–40 Ca2+ ions,
and this Ca2+-dependent CASQ2 polymerization is essential
for its localization within the jSR (Slupsky et al. 1987;
Mitchell et al. 1988). CASQ2 binding to triadin and junctin,

transmembrane proteins embedded in the jSR membrane that
interact with RYR2, also likely contributes to CASQ2 reten-
tion in jSR (Zhang et al. 1997). This quaternary complex
between RYR2, triadin, junctin, and CASQ2 mediates inhib-
itory interactions between CASQ2 and RYR2 that reduce
spontaneous RYR2 opening (Knollmann 2010).

Whereas the macromolecular complex of RYR2 and its
interacting proteins is localized to jSR, the SR Ca2+-ATPase,
SERCA2a, is mainly localized on the longitudinal SR, al-
though it is also present at lower levels in the jSR
(Jorgensen et al. 1982; Vangheluwe et al. 2003). Thus, Ca2+

is released from the jSR, stimulates contraction of adjacent
sarcomeres, and is returned to the SR along the longitudinal
tubules, as well as the jSR. SERCA2a is regulated by phos-
pholamban (PLB), a cardiac-specific endogenous SERCA2a
inhibitor that binds to and colocalizes with SERCA2a in the
longitudinal SR and jSR (He et al. 2020).

These fine, structurally specialized SR membrane com-
plexes determine the spatiotemporal intermolecular Ca2+ sig-
naling in the nanoscopic dyadic region.

Ca2+ signaling in dyads

In a single dyad, nanoscopic Ca2+ signaling is an elaborate
local control process between LTCCs on the T-tubules and
RYR2 on the jSR (Fig. 1D). During EC coupling, the opening
of an individual Ca2+-permeant LTCC in response to mem-
brane depolarization creates a Ca2+ microdomain within the
dyadic cleft that activates RYR2 almost instantly (Ton ≤ 1 ms)
(Gyorke and Fill 1993) at high-affinity cytosolic Ca2+ activa-
tion sites. The activated RYR2 cluster releases a much larger
amount of Ca2+ into the dyadic cleft, in the form of a Ca2+

spark (Cheng et al. 1993), accompanied by local depletion of
Ca2+ at the cluster’s jSR luminal side, a Ca2+ blink (Brochet
et al. 2005). As a result, the merging of Ca2+ influx through
LTCC and SR Ca2+ release through RYR2 builds up local
Ca2+ gradients that arise abruptly in ~5 ms, attain peaks of
~100 μmol/L, and persist for ~15 ms (Acsai et al. 2011;
Cannell et al. 2013). During full-fledged cardiac EC coupling,
~104 sparks are activated within a few tens ofmilliseconds in a
single cardiomyocyte (Cannell et al. 1994), summating into a
global Ca2+ transient of ~1 μmol/L and leading to activation
of downstream contractile proteins.

RYR2 also has a stochastic probability of spontaneously
opening to release Ca2+ in quiescent unstimulated myocytes at
diastolic [Ca2+]i ~100 nM without EC coupling. These spon-
taneous sparks appear to be identical to the ones evoked by
LTCC activation during EC coupling in terms of amplitude,
kinetics, and spatial properties (Cheng and Lederer 2008).

RYR2 homotetramers are organized into clusters as two-
dimensional, elongated paracrystalline arrays. Due to Ca2+-
dependent in terac t ions between adjacent RYR2
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homotetramers, the dyad’s Ca2+ release properties depend on
the geometry, density, and spacing of these clusters.
Depending on species and measurement technique, the average
array in ventricular cardiomyocytes contains 14–100
homotetramers (Baddeley et al. 2009; Shiels and Galli 2014).
RYR2 channels within a cluster have been hypothesized to act
synergistically as single Ca2+ release units, in an all-or-none
mode (Stern 1992). However, this coupled gating (Marx et al.
2001) cannot explain the prompt termination of Ca2+ sparks
and the fidelity and stability of intracellular signaling (Stern
et al. 1999; Wang et al. 2004) and also sharply contrasts with
the relatively constant and brief duration of Ca2+ sparks (Wang
et al. 2002). Since RYR2 arrays located in intracellular jSR
membranes are inaccessible to direct electrophysiological in-
vestigation, their activity has beenmeasured using a nanosensor
targeted to RYR2. This nanosensor, consisting of the Ca2+-
sensitive genetically encoded sensor GCaMP6f fused to junctin
or triadin, visualized wide variability of Ca2+ nanospark ampli-
tude at a single dyad and between dyads, indicative of stochas-
tic recruitment of different numbers or subclusters of RYR2 to
yield Ca2+ sparks (Shang et al. 2014).

The development of dyads

Efficient EC coupling in mature mammalian ventricular
cardiomyocytes requires dyads. However, dyads are not pres-
ent in fetal cardiomyocytes and form postnatally. In rats and
mice, T-tubules are absent at birth. At postnatal day 10 (P10),
nascent T-tubules are visible as invaginations of the surface
sarcolemma. The nascent tubular network expands from the
periphery inward, with most tubules maintaining continuity
with the cell surface (Maio et al. 2007). By P20,
cardiomyocytes contain a fully mature T-tubular network
(Ziman et al. 2010; Chen et al. 2013).

The SR component of dyads develops with a different time
course. In fetal cardiomyocytes, the jSR docks to the plasma
membrane and forms peripheral couplings. Initially, the junc-
tions contain very few Ca2+-handling proteins such as RYR2,
LTCC, and CASQ2 (Franzini-Armstrong et al. 2005). With
further development, both the density of peripheral couplings
and their content of Ca2+-handling proteins increase. Internal
jSR/RYR2 Ca2+ release units develop after birth and form an
extended network alignedwith sarcomere Z-lines and are fully
capable of Ca2+ release by P10, when T-tubules are just
starting to form (Ziman et al. 2010). As the T-tubular network
develops and matures over the next 10 days, dyadic coupling
forms between LTCC on T-the tubules and RYR2 on the jSR.
This formation of dyadic junctions is marked by the redistri-
bution of junctophilin 2 (JPH2): at P10, JPH2 primarily local-
ized to surface the sarcolemma and did not colocalize with
RYR2 at the jSR, whereas by P20, JPH2 was primarily local-
ized with RYR2 at the jSR (Ziman et al. 2010).

The factors that drive and regulate the remarkable process
of dyad formation, involving the development of the jSR net-
work, the T-tubule network, and the close physical coupling
between the two, are poorly understood. The factors respon-
sible for the formation of jSR and its localization within the
cell at Z-discs early in postnatal life have not been reported,
whereas several candidate T-tubule regulators have been re-
ported. BIN1 promotes membrane curvature and is localized
to the T-tubules (Lee et al. 2002). In Drosophila, ablation of
the ortholog of BIN1 caused loss of flight and disrupted flight
muscle T-tubules (Razzaq et al. 2001). However in mice, car-
diac specific ablation of BIN1 did not prevent T-tubule for-
mation and was compatible with normal heart function until 3
months, with slow progressive deterioration over the subse-
quent year (Hong et al. 2014; Laury-Kleintop et al. 2015).
While not required for T-tubule formation, BIN1 is responsi-
ble for T-tubule folding, establishment of microdomains with-
in T-the tubules, and LTCC trafficking to the T-tubules (Hong
et al. 2010, 2014; Fu and Hong 2016). BIN1 was also suffi-
cient to increase T-tubules and LTCC clustering near RYR2
within human embryonic stem cell–derived cardiomyocytes
(Mata et al. 2019). JPH2 has attracted considerable interest in
the regulation of T-tubule biogenesis and the coordination of
EC coupling. A C-terminal transmembrane domain anchors
JPH2 to the jSR, while the N-terminal membrane binding
domains bind the sarcolemma. This structure enables JPH2
to bridge between the jSR and T-tubule membranes and sta-
bilize dyads (Takeshima et al. 2000). JPH2 colocalizes with
RYR2 at the jSR, and cardiac JPH2 knockdown using an
shRNA-expressing transgene disrupted T-tubule formation
in developing cardiomyocytes impaired intracellular Ca2+

handling and precipitated severe heart failure (Chen et al.
2013; Reynolds et al. 2013). However, a Cas9-based mosaic
gene knockout strategy revealed that JPH2 is not essential for
T-tubule formation in the normal heart, although it plays an
important role in stabilizing T-tubules in the context of cardiac
dysfunction (Guo et al. 2017). This study also identified
RYR2 as being the cell autonomously required for mainte-
nance of T-tubules. Recent work showed that nexilin
(NEXN), a widely expressed F-actin binding protein
(Ohtsuka et al. 1998), is specifically localized in
cardiomyocytes to the jSR and is required for normal Ca2+

handling (Liu et al. 2019). Human NEXN mutations cause
dilated cardiomyopathy (Mazzarotto et al. 2020), and in mice
NEXN knockout caused rapidly lethal dilated cardiomyopathy
(Liu et al. 2019). Within this context of significant heart fail-
ure, NEXN knockout abolished formation of nascent T-
tubules in the neonatal heart (Liu et al. 2019).

In summary, dyads develop in the first weeks of postnatal
life through extensive and coordinated reorganization of both
the sarcolemma and the SR membranes and their associated
proteins. The factors responsible for this intricate process re-
main largely unknown.
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Dyad alterations in heart disease

Dyad alterations in heart failure

The dyad’s highly organized structure is essential for EC cou-
pling and normal cardiac function. In dilated and ischemic car-
diomyopathies, both the volume densities and the surface areas
of T-tubules and jSRwere largely decreased, leading to dramat-
ically reduced dyads (by up to 60%) and coupling area (~17%)
that impair the efficiency of EC coupling and heart function
(Zhang et al. 2013). In failing hearts, T-tubules become disor-
ganized and less tightly coupled to SR at dyads. Among the
changes to T-tubules seen in failing hearts are (Fig. 2): de-
creased transverse and total T-tubules (He 2001; Wei et al.
2010a), increased fraction of longitudinal tubules (Kaprielian
et al. 2000; Song et al. 2006), T-tubule displacement from Z-
lines (Cannell et al. 2006), and the appearance of highly dilated
(Crossman et al. 2017) or sheet-like (Seidel et al. 2017) T-tu-
bules. This spatial dispersion, fracture, and loss of T-tubules
alters the spatial distribution of LTCCs, causes their dislocation
and separation from jSR (Hong et al. 2010), and creates or-
phaned RYR2 channels (Song et al. 2006). Heart failure also
perturbs T-tubule microdomains and disorders the normal
“fuzzy space” within the T-tubule lumens, which alters ion
channel activity and electrophysiological properties and con-
tributes to arrhythmias (Hong et al. 2014). Heart failure also
impacts the nanoscale organization of RYR2 into clusters. In
failing cardiomyocytes, RYR2 clusters have a more sparse,
dispersed configuration: the number of clusters increases due
to fragmentation of clusters into smaller adjacent subclusters
and the number of RYR2 channels per dyad and per cluster
decreases by 2/3 and 1/2, respectively (Kolstad et al. 2018).

Associated with these structural alterations, as well as
changes in ion channel expression and activity, failing
cardiomyocytes have impaired Ca2+ handling characterized
by reduced Ca2+ transient amplitude, slower rate of decay of
the Ca2+ transient, and decreased SR Ca2+ content (Piacentino
et al. 2003). The reduction of the Ca2+ transient amplitude,
which is directly linked to reduced cardiac contractility, is
largely due to the decreased EC coupling resulting from the
disrupted dyad architecture (Gomez 1997). The dispersed
nanoscale organization of RYR2 also contributes to the slower
Ca2+ transient upstroke and lower peak [Ca2+]i by slowing
Ca2+ sparks and de-synchronizing global Ca2+ transients in
heart failure (Kolstad et al. 2018). The disruption of T-
tubules and uncoupling of LTCC from RYR2 also cause
dyssynchronous Ca2+ release among dyads, Ca2+ instability
(Song et al. 2006; Heinzel et al. 2008; Lyon et al. 2009),
arrhythmogenic Ca2+ waves (Cheng et al. 1996), and delayed
afterdepolarizations (Shiferaw et al. 2012; Fowler et al. 2020).
Therefore, T-tubule pathology is a major factor that contrib-
utes to contractile dysfunction and propensity to arrhythmia in
human heart failure (Crossman et al. 2015).

Although the mechanistic details of dyad remodeling in
heart failure are still being elucidated, existing studies link this
process to altered expression of junctional membrane complex
proteins that construct dyads. In failing hearts from rodent
models (Minamisawa et al. 2004;Wei et al. 2010b) and patients
(Landstrom et al. 2011) (Frisk et al. 2016), JPH2 is profoundly
downregulated. This progressive decrease in JPH2 protein level
correlates with the loss and disruption of T-tubule and in turn is
likely due to a combination of upregulation of microRNA-24,
the immediate upstream suppressor (Xu et al. 2012), misloca-
tion (Zhang et al. 2014), and calpain-mediated degradation
(Guo et al. 2015). Interestingly, an N-terminal JPH2 fragment
generated by calpain protease cleavage in heart failure translo-
cates to the nucleus and regulates gene transcription to counter-
act deleterious changes that occur in heart failure (Guo et al.
2018a). JPH2 activity is also regulated by phosphorylation by
SPEG (striated muscle preferentially expressed protein kinase),
a recently described junctional kinase essential for junctional
membrane complex integrity (Quick et al. 2017) (see
“Proteomic mapping of the cardiac dyad”). SPEG is transcrip-
tionally decreased by about 80% in patients with non-genetic
forms of cardiomyopathy and heart failure (Quick et al. 2017).

However, disorganization of T-tubules in some experimen-
tal heart failure models is not associated with altered JPH2 level
(Caldwell et al. 2014). Decreased BIN1 level is also found in
heart failure (Hong et al. 2012; Caldwell et al. 2014), which
aggravates overall T-tubule loss (Caldwell et al. 2014) and dis-
rupts T-tubule morphology and microdomains (Hong et al.
2014) and BIN1-dependent LTCC trafficking to T-tubules
(Hong et al. 2010). Triadin and junctin, components of the
RYR2 macromolecular complex in jSR, are also markedly
downregulated in failing human hearts (Gergs et al. 2007).
Junctin knockout mice had structurally and functionally normal
hearts but developed lethal ventricular arrhythmias associated
with increased SR Ca2+ load and increased delayed
afterdepolarizations (Yuan et al. 2007). Similarly, triadin
knockout caused cardiac arrhythmias with preserved ventricu-
lar function. The jSR showed extensive structural remodeling
and reduced T-tubule contacts, associated with reduced EC
coupling; decreased expression of jSR proteins such as
RYR2, junctin, and CASQ2; elevated SR Ca2+; and increased
rate of spontaneous SR Ca2+ release (Chopra et al. 2009).

Dyad alterations caused by mutations in Ca2+ release
unit genes

Mutations in genes that encode components of Ca2+ release
units, such as RYR2, junctin, triadin, and CASQ2, cause an
inherited arrhythmia known as catecholaminergic polymorphic
ventricular tachycardia (Sumitomo 2016). These mutations in-
crease diastolic SR Ca2+ release through RYR2 by directly or
indirectly altering the Ca2+ release properties of the RYR2mac-
romolecular complex. Interestingly, these mutations also alter
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the ultrastructure of Ca2+ release units. In mouse models,
CPVT-causing Ryr2 or Casq2 mutation (Rizzi et al. 2008;
Denegri et al. 2012; Bongianino et al. 2017) decreased the
number of dyads and the length of individual dyads while wid-
ening the jSR lumen and increasing the variability in jSR shape.
The molecular link between CPVT-causing mutations and the
ultrastructural abnormalities is not clear, but the similar effect of
the Ryr2 and Casq2 mutations on jSR suggests a shared path-
ophysiological mechanism, such as abnormal intraluminal Ca2+

regulation.

New approaches to studying the dyad

The recently developed technologies promise to accelerate our
understanding of the structure and function of the dyad in
health in disease. Here we highlight two recently developed
approaches.

Proteomic mapping of the cardiac dyad

The leading role of dyads in controlling EC coupling highlights
a need for a more comprehensive dissection of the highly
packed dyadic protein complexes. Application of the emerging
proteomic approaches to dyads is providing new insights into
the regulation of EC coupling and CICR in dyads. For instance,
through a classic affinity purification/mass spectrometry prote-
omic analysis of immunoprecipitated RYR2 and JPH2
interactomes, SPEG was identified as a novel binding partner
for both proteins in junctions, and its deficiency caused T-
tubule loss, Ca2+ mishandling, and heart failure (Quick et al.
2017). T-tubule abnormalities temporally preceded cardiac dys-
function, suggesting that it was the cause rather than the result
of heart failure. Mechanistically, SPEG bound and promoted
phosphorylation of JPH2, and JPH2 phosphorylation, was re-
duced in SPEG ablated cardiomyocytes, suggesting that SPEG
phosphorylation of JPH2 is required to maintain T-tubules and
cardiac homeostasis.

RYR2

JPH2

NCX

CASQ2

LTCC

JCN/TRDN1

a

b

c

Healthy Failing

Fig. 2 Altered dyad architecture in heart failure. (A) Confocal micro-
graphs of the T-tubule system revealed by MM4-64 membrane dye in
healthy and diseased murine cardiomyocytes. Note the T-tubular disor-
ganization in the diseased cardiomyocyte. (B) Schematic illustration of
normal (left) and diseased (right) dyadic junctions. The diseased dyad
architecture features T-tubule loss and remodeling, ion channel disloca-
tion, junctional contact area shrinkage, LTCC-RYR2 uncoupling, RYR2
cluster redistribution, and disordered fuzzy space (see text). Bar = 5 μm.

JCN, junctin; TRDN1, triadin 1. (C) Transmission electron micrographs
of human LV myocardium from healthy control (left) or patient with
dilated cardiomyopathy (DCM, right).Arrows point to T-tubules (TT).
Boxed areas are enlarged in upper right corner. In control, jSR is sepa-
rated from T-tubule by a narrow junctional gap. In DCM, the junctional
gap is wider, and the contact area is reduced. Panel C was reproduced
from Zhang et al. (2013) with permission from the publisher
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Recent advances in proximity labeling-based interactome
mapping have been applied to describing the proteome of the
dyad both in vitro and in vivo. Biotin-based proximity label-
ing techniques (Trinkle-Mulcahy 2019) such as APEX, based
on an engineered ascorbate peroxidase, and BioID, based on
an engineered, promiscuous biotin ligase, BirA*, have been
applied to identify the cardiac dyad proteome. To address the
long undefined molecular mechanism by which adrenergic
stimulation increases Ca2+ entry through the LTCC, Marx
and colleagues expressed APEX2 fused to the pore-forming
transmembrane α1C or intracellular β2B subunits of LTCC
and performed multiplexed quantitative proteomics to define
proteins in the vicinity of LTCC with and without adrenergic
stimulation (Liu et al. 2020) (Fig. 3A). These data showed that
RAD, a monomeric G protein enriched in the LTCC micro-
environment, acts as an inhibitor of LTCC under basal condi-
tions. Stimulation of the β-adrenergic receptor activates PKA,
which phosphorylates RAD and disengages it from LTCC.

Unlike APEX-based methods, BioID can be deployed in
intact animals. To delineate the dyadic proteome proximal to
JPH2, Chen et al. generated knock-in mice in which endoge-
nous JPH2 is fused with BioID2 (Fig. 3B). In vivo BioID
assay followed by mass spectrometry identified known pro-
teins within the dyad (RYR2, LTCC α1C), along with some
potential candidates that await experimental verification (Feng
et al. 2020).

A more extensive application of novel proteomic ap-
proaches in normal and diseased states will expand our knowl-
edge of the dyadic proteome and its changes in disease.

Mosaic, somatic gene inactivation to probe dyadic
function

Studies of dyad development and function have been limited
by the lack of in vitro model systems. Neonatal mammalian
cardiomyocytes can be cultured for several days but lack
dyads. Adult mammalian cardiomyocytes can be isolated
and acutely studied, but rapidly dedifferentiate in culture,
degrading dyad architecture and Ca2+ handling properties.
Stem cell–derived cardiomyocytes for the most part lack T-
tubules and mature junctions, although approaches to over-
come these limitations are emerging (Parikh et al. 2017;
Ronaldson-Bouchard et al. 2018; Guo and Pu 2020). As a
result, the use of gain- and loss-of-function approaches to
interrogate gene function in dyads has relied on genetically
modified mice, which is both slow and resource intensive.
Moreover, because standard genetic manipulation involves
all cardiomyocytes, resolving direct from secondary effects
of manipulations has often been difficult, confounding the
interpretation of experiments (Guo and Pu 2018).

Somatic, cardiomyocyte-restricted mutagenesis induced by
adeno-associated virus (AAV) in conjunction with CRISPR/
Cas9 (CASAAV) is a powerful approach that overcomes

these barriers (Guo et al. 2017, 2018b, 2019) (Fig. 3C).
AAV9 efficiently transduces cardiomyocytes. AAV-
mediated delivery of Cre, driven from a cardiomyocyte-
specific promoter, and gene-specific guide RNA efficiently
induce somatic loss-of-function mutations in targeted genes
when combined with a Cre-activated Cas9 allele engineered
into the mouse genome. Titration of AAV dose enables gen-
eration of genetic mosaics in which a low fraction (e.g., 10–
20%) of cardiomyocytes are deficient in the targeted gene(s),
permitting precise interpretation of the cell autonomous effect
of gene inactivation within the context of normal cardiac func-
tion. In a proof-of-concept experiment, CASAAVwas used to
ta rge t Jph2 , and over 70% of AAV-t ransduced
cardiomyocytes lost JPH2 immunoreactivity (Fig. 3D). At
higher AAV doses that transduced ~65% of cardiomyocytes,
JPH2 depletion resulted in heart failure and T-tubule disorga-
nization, both in AAV-transduced as well as non-AAV-
transduced cardiomyocytes (Fig. 3E, high dose). At a lower
AAV dose that transduced ~20% of cardiomyocytes, T-
tubules were minimally affected in both transduced and non-
transduced cardiomyocytes (Fig. 3E, low dose). Therefore, in
a healthy myocardium, JPH2 is not cell autonomously re-
quired for T-tubule development, but it is required to stabilize
T-tubules in the face of cardiac stress and dysfunction (Guo
et al. 2017). When a floxed allele is available, titration of
AAV-Cre can be used similarly to generate genetic mosaics
to assess cell autonomous gene function (Prendiville et al.
2015; Zhang et al. 2017; Guo et al. 2018b, 2019). The
AAV-based Cas9 and Cre/LoxP strategies complement each
other: CASAAV can be used to rapidly screen the function of
many different genes, followed by the detailed study of indi-
vidual genes using AAV-Cre and a floxed allele.

Conclusions

There has been tremendous progress in understanding the
physiological, architectural, and molecular basis of EC cou-
pling and its perturbations in and contributions to heart dis-
ease. Despite these advances, many unanswered questions
remain.What factors promote and coordinate postnatal forma-
tion of jSR at sarcomere Z-lines, formation of the T-tubular
network, and intimate coupling of these systems at dyads?
How can this process be stimulated in stem cell–derived
cardiomyocytes so that they better recapitulate the physiology
of native, mature cardiomyocytes? What are the molecular
mechanisms that maintain homeostasis of this intricate archi-
tecture in the normal heart that lead to its disorganization and
uncoupling in heart disease? What is the full complement of
proteins in dyads and how do they impact dyad function?
With the development of numerous powerful imaging tech-
niques such as electron microscopy and super-resolution op-
tical imaging, nanoscopic Ca2+ biosensors, a palette of
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Fig. 3 New approaches to dissecting the structure and functional
regulation of dyads. (A–B) Proximity proteomics applied to probe the
dyadic proteome. Purple-shaded regions indicate labeling sphere deter-
mined by biotin free radical half-life. (A) APEX2-based proximity prote-
omics. Liu et al. (2020) fused APEX2 to components of the LTCC.
Quantitative proteomics showed that β-adrenergic signaling regulated
LTCC activity by controlling interaction of the LTCC β2B subunit with
the novel dyad protein RAD. (B) Feng et al. (2020) fused endogenous
JPH2 to BioID2 to detect nearby dyadic proteins. (C–E) Cas9 and AAV
(CASAAV) strategy to generate somatic mutations in cardiomyocytes.
AAV expressing gRNAs that target the gene of interest and
cardiomyocyte-restricted Cre is administered to mice with genome-

encoded, Cre-activated Cas9-P2A-GFP. Cre activates Cas9 and GFP,
and Cas9 plus gRNAs inactivate the gene of interest. (D) Inactivation
of JPH2 in Cas9-P2A-GFP expressing cardiomyocytes. Mice were treat-
ed with CASAAV vector targeting Jph2. At P21, dissociated
cardiomyocytes were imaged to detect GFP and JPH2. Note the loss of
JPH2 immunoreactivity in GFP+ cardiomyocyte (arrow). (E) Mosaic
gene inactivation by CASAAV permits precise interpretation of results.
CASAAV vector targeting JPH2 was given at lower or high doses. High
dose, which caused heart failure, resulted in distorted T-tubule morphol-
ogy in GFP+ and GFP− cells. Low dose, which did not cause heart
failure, did not visibly disrupt T-tubules in GFP+ or GFP− cells. D–E
were modified from Guo et al. (2017) with permission
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proteomic technologies, and improved functional genomic
strategies, we are well equipped to tackle these challenging
questions that are fundamental to understanding cardiac phys-
iology and disease.
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